Suppr超能文献

预测糖尿病住院患者不良结局模型的时间和外部验证。

Temporal and external validation of a prediction model for adverse outcomes among inpatients with diabetes.

机构信息

Institute of Applied Health Research, University of Birmingham, Birmingham.

Diabetes Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham.

出版信息

Diabet Med. 2018 Jun;35(6):798-806. doi: 10.1111/dme.13612. Epub 2018 Mar 24.

Abstract

AIM

To temporally and externally validate our previously developed prediction model, which used data from University Hospitals Birmingham to identify inpatients with diabetes at high risk of adverse outcome (mortality or excessive length of stay), in order to demonstrate its applicability to other hospital populations within the UK.

METHODS

Temporal validation was performed using data from University Hospitals Birmingham and external validation was performed using data from both the Heart of England NHS Foundation Trust and Ipswich Hospital. All adult inpatients with diabetes were included. Variables included in the model were age, gender, ethnicity, admission type, intensive therapy unit admission, insulin therapy, albumin, sodium, potassium, haemoglobin, C-reactive protein, estimated GFR and neutrophil count. Adverse outcome was defined as excessive length of stay or death.

RESULTS

Model discrimination in the temporal and external validation datasets was good. In temporal validation using data from University Hospitals Birmingham, the area under the curve was 0.797 (95% CI 0.785-0.810), sensitivity was 70% (95% CI 67-72) and specificity was 75% (95% CI 74-76). In external validation using data from Heart of England NHS Foundation Trust, the area under the curve was 0.758 (95% CI 0.747-0.768), sensitivity was 73% (95% CI 71-74) and specificity was 66% (95% CI 65-67). In external validation using data from Ipswich, the area under the curve was 0.736 (95% CI 0.711-0.761), sensitivity was 63% (95% CI 59-68) and specificity was 69% (95% CI 67-72). These results were similar to those for the internally validated model derived from University Hospitals Birmingham.

CONCLUSIONS

The prediction model to identify patients with diabetes at high risk of developing an adverse event while in hospital performed well in temporal and external validation. The externally validated prediction model is a novel tool that can be used to improve care pathways for inpatients with diabetes. Further research to assess clinical utility is needed.

摘要

目的

为了验证我们之前开发的预测模型,该模型使用了伯明翰大学医院的数据来识别住院糖尿病患者发生不良结局(死亡或住院时间过长)的高风险患者,以便证明其在英国其他医院人群中的适用性。

方法

使用伯明翰大学医院的数据进行时间验证,使用英格兰中部地区国民保健信托基金会和伊普斯维奇医院的数据进行外部验证。所有成年糖尿病住院患者均纳入研究。模型中包含的变量包括年龄、性别、种族、入院类型、重症监护病房入院、胰岛素治疗、白蛋白、钠、钾、血红蛋白、C 反应蛋白、估计肾小球滤过率和中性粒细胞计数。不良结局定义为住院时间过长或死亡。

结果

该模型在时间验证和外部验证数据集中的区分度良好。在使用伯明翰大学医院数据进行的时间验证中,曲线下面积为 0.797(95%置信区间 0.785-0.810),灵敏度为 70%(95%置信区间 67-72),特异性为 75%(95%置信区间 74-76)。在使用英格兰中部地区国民保健信托基金会数据进行的外部验证中,曲线下面积为 0.758(95%置信区间 0.747-0.768),灵敏度为 73%(95%置信区间 71-74),特异性为 66%(95%置信区间 65-67)。在使用伊普斯维奇数据进行的外部验证中,曲线下面积为 0.736(95%置信区间 0.711-0.761),灵敏度为 63%(95%置信区间 59-68),特异性为 69%(95%置信区间 67-72)。这些结果与伯明翰大学医院内部验证模型的结果相似。

结论

该预测模型能够识别住院糖尿病患者发生不良事件的高风险患者,在时间验证和外部验证中表现良好。外部验证的预测模型是一种新的工具,可以用于改善糖尿病住院患者的护理路径。需要进一步研究以评估其临床实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验