Tan Boon Hooi, Ahemad Nafees, Pan Yan, Palanisamy Uma Devi, Othman Iekhsan, Yiap Beow Chin, Ong Chin Eng
Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.
School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
Biopharm Drug Dispos. 2018 Apr;39(4):205-217. doi: 10.1002/bdd.2127. Epub 2018 Mar 23.
Many dietary supplements are promoted to patients with osteoarthritis (OA) including the three naturally derived compounds, glucosamine, chondroitin and diacerein. Despite their wide spread use, research on interaction of these antiarthritic compounds with human hepatic cytochrome P450 (CYP) enzymes is limited. This study aimed to examine the modulatory effects of these compounds on CYP2C9, a major CYP isoform, using in vitro biochemical assay and in silico models. Utilizing valsartan hydroxylase assay as probe, all forms of glucosamine and chondroitin exhibited IC values beyond 1000 μM, indicating very weak potential in inhibiting CYP2C9. In silico docking postulated no interaction with CYP2C9 for chondroitin and weak bonding for glucosamine. On the other hand, diacerein exhibited mixed-type inhibition with IC value of 32.23 μM and K value of 30.80 μM, indicating moderately weak inhibition. Diacerein's main metabolite, rhein, demonstrated the same mode of inhibition as diacerein but stronger potency, with IC of 6.08 μM and K of 1.16 μM. The docking of both compounds acquired lower CDOCKER interaction energy values, with interactions dominated by hydrogen and hydrophobic bondings. The ranking with respect to inhibition potency for the investigated compounds was generally the same in both in vitro enzyme assay and in silico modeling with order of potency being diacerein/rhein > various glucosamine/chondroitin forms. In vitro-in vivo extrapolation of inhibition kinetics (using 1 + [I]/K ratio) demonstrated negligible potential of diacerein to cause interaction in vivo, whereas rhein was predicted to cause in vivo interaction, suggesting potential interaction risk with the CYP2C9 drug substrates.
许多膳食补充剂被推荐给骨关节炎(OA)患者,包括三种天然衍生化合物:氨基葡萄糖、软骨素和双醋瑞因。尽管它们被广泛使用,但关于这些抗关节炎化合物与人类肝脏细胞色素P450(CYP)酶相互作用的研究却很有限。本研究旨在使用体外生化测定法和计算机模拟模型,研究这些化合物对主要CYP亚型CYP2C9的调节作用。以缬沙坦羟化酶测定为探针,所有形式的氨基葡萄糖和软骨素的IC值均超过1000μM,表明其抑制CYP2C9的潜力非常弱。计算机模拟对接推测软骨素与CYP2C9无相互作用,氨基葡萄糖有弱结合。另一方面,双醋瑞因表现出混合型抑制,IC值为32.23μM,K值为30.80μM,表明抑制作用中等偏弱。双醋瑞因的主要代谢产物大黄酸表现出与双醋瑞因相同的抑制模式,但效力更强,IC值为6.08μM,K值为1.16μM。两种化合物的对接获得了较低的CDOCKER相互作用能值,相互作用以氢键和疏水键为主。在所研究化合物的抑制效力方面,体外酶测定和计算机模拟建模的排名总体相同,效力顺序为双醋瑞因/大黄酸>各种氨基葡萄糖/软骨素形式。抑制动力学的体外-体内外推法(使用1 + [I]/K比率)表明,双醋瑞因在体内引起相互作用的可能性可忽略不计,而大黄酸预计会引起体内相互作用,提示与CYP2C9药物底物存在潜在的相互作用风险。