Suppr超能文献

[PET-CT检查结果与乳腺癌分子亚型、治疗反应及预后的相关性研究进展]

[Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis].

作者信息

Pan Jingying, He Mengye, Ke Wei, Hu Menglin, Wang Meifang, Shen Peng

机构信息

Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.

出版信息

Zhejiang Da Xue Xue Bao Yi Xue Ban. 2017 May 25;46(5):473-480. doi: 10.3785/j.issn.1008-9292.2017.10.04.

Abstract

In recent years, PET-CT has an increasing importance in the diagnosis and treatment of breast cancer. PET-CT scan can be used as a noninvasive method for molecular subtyping of breast cancer, and prediction of therapeutic effect and prognosis of patients. Studies have revealed that luminal A subtype has a significantly lower maximum standard intake value (SUVmax) than the other subtypes; triple-negative and human epidermal growth factor receptor 2 (HER2) positive tumors have relatively high SUVmax than luminal B subtype, but the specificity and sensitivity of SUVmax in diagnosis of molecular subtypes are very low, so its clinical application is limited. In predicting the effectiveness of the treatment and the prognosis of the patients, the decreased uptake of fluorodeoxyglucose (FDG) is correlated with better therapeutic effect. In addition, patients with high FDG uptake have worse survival outcomes. New tracers, such as F-fluoroestradiol (F-FES) and[89Zr]trastuzumab play an important role in molecular subtyping of breast cancer. F-FES PET-CT can effectively evaluate the estrogen receptor (ER) status of breast cancer and the response to endocrine therapy.[89Zr]trastuzumab PET-CT can evaluate the expression of HER2 and localization of HER2-overexpressing tumors, but their specificities and sensitivities are also low. In this article, we review the recent advances on the correlation of PET-CT findings with molecular subtypes, treatment response and prognosis of breast cancer.

摘要

近年来,正电子发射断层显像-X线计算机体层成像(PET-CT)在乳腺癌的诊断和治疗中愈发重要。PET-CT扫描可作为一种用于乳腺癌分子分型、预测患者治疗效果及预后的非侵入性方法。研究显示,管腔A型亚型的最大标准摄取值(SUVmax)显著低于其他亚型;三阴性及人表皮生长因子受体2(HER2)阳性肿瘤的SUVmax相较于管腔B型亚型相对较高,但SUVmax在分子亚型诊断中的特异性和敏感性很低,因此其临床应用受限。在预测治疗效果及患者预后方面,氟脱氧葡萄糖(FDG)摄取降低与较好的治疗效果相关。此外,FDG摄取高的患者生存结局较差。新型示踪剂,如F-氟雌二醇(F-FES)和[89Zr]曲妥珠单抗在乳腺癌分子分型中发挥重要作用。F-FES PET-CT可有效评估乳腺癌的雌激素受体(ER)状态及对内分泌治疗的反应。[89Zr]曲妥珠单抗PET-CT可评估HER2的表达及HER2过表达肿瘤的定位,但它们的特异性和敏感性也较低。在本文中,我们综述了PET-CT检查结果与乳腺癌分子亚型、治疗反应及预后相关性的最新进展。

相似文献

1
[Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis].
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2017 May 25;46(5):473-480. doi: 10.3785/j.issn.1008-9292.2017.10.04.
2
Combined F-FDG and F-Alfatide II PET May Predict Luminal B (HER2 Negative) Subtype and Nonluminal Subtype of Invasive Breast Cancer.
Mol Pharm. 2022 Sep 5;19(9):3405-3411. doi: 10.1021/acs.molpharmaceut.2c00547. Epub 2022 Aug 16.
7
Prognostic significance of preoperative F-FDG PET/CT for breast cancer subtypes.
Breast. 2016 Dec;30:5-12. doi: 10.1016/j.breast.2016.08.003. Epub 2016 Aug 29.
9
The correlation of F-FDG PET/CT metabolic parameters, clinicopathological factors, and prognosis in breast cancer.
Clin Transl Oncol. 2021 Mar;23(3):620-627. doi: 10.1007/s12094-020-02457-w. Epub 2020 Jul 18.
10
More advantages in detecting bone and soft tissue metastases from prostate cancer using F-PSMA PET/CT.
Hell J Nucl Med. 2019 Jan-Apr;22(1):6-9. doi: 10.1967/s002449910952. Epub 2019 Mar 7.

本文引用的文献

1
Role of F-PET/CT in Predicting Prognosis of Patients With Breast Cancer After Neoadjuvant Chemotherapy.
Clin Breast Cancer. 2018 Feb;18(1):45-52. doi: 10.1016/j.clbc.2017.09.006. Epub 2017 Sep 19.
3
Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM).
Eur J Cancer. 2017 Apr;75:284-298. doi: 10.1016/j.ejca.2017.01.017. Epub 2017 Feb 28.
8
Detection of HER2-Positive Metastases in Patients with HER2-Negative Primary Breast Cancer Using 89Zr-Trastuzumab PET/CT.
J Nucl Med. 2016 Oct;57(10):1523-1528. doi: 10.2967/jnumed.115.172031. Epub 2016 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验