Suppr超能文献

利用先验知识的多步骤统一模型预测新生儿和婴儿的药物清除率。

Multistep Unified Models Using Prior Knowledge for the Prediction of Drug Clearance in Neonates and Infants.

机构信息

Office of Biostatistics & Epidemiology, Center for Biologics Evaluation and Research, Food & Drug Administration, Silver Spring, MD, USA.

Division of Clinical Evaluation and Pharmacology/Toxicology, Office of Tissue and Advanced Therapies (OTAT), Center for Biologics Evaluation and Research, Food & Drug Administration, Silver Spring, MD, USA.

出版信息

J Clin Pharmacol. 2018 Jul;58(7):877-884. doi: 10.1002/jcph.1089. Epub 2018 Feb 28.

Abstract

Allometric approaches are widely used for interspecies scaling for the prediction of pharmacokinetic (PK) parameters during drug development. The concept of allometry can also be extended to predict PK parameters from adults to children. Three methods for extrapolating pediatric clearance were developed and evaluated using the clearance values of 4 drugs. The first method was established using a simple allometric (SA) model with estimated coefficient and exponent based on data ranging from children older than 2 years to adult. Then we developed a unified multistep single-exponent (MSE) and multistep body-weight-dependent exponent (MBDE) models. The major steps in these 2 new methods include generating pseudopredicted clearance for unobserved new populations such as preterm neonates, term neonates, and infants. Subsequent steps involve incorporating the pseudopredicted clearance with the actual PK data from older children and adults. All 3 models were then used to predict drug clearance in children ≤2 years old (N = 278). Drug clearance was predicted with mean absolute error of 29.6, 14.2, and 12.9 using SA, MSE, MBDE, respectively. The root mean square error was 65.9, 29.8, 24.7 for SA, MSE, MBDE, respectively. Approximately 41%, 72%, and 74% of the children's clearance data were within 0.5 to 1.5-fold of the observed values when drug clearance was extrapolated using SA, MSE, and MBDE models, respectively. The present multistep unified extrapolation approaches improved the prediction of clearance from preterm neonates to 2 years of age and may have practical use for first-in-pediatric dose selection.

摘要

种属间比例法广泛用于药物开发过程中预测药代动力学(PK)参数,其概念也可扩展至预测从成人到儿童的 PK 参数。本文应用 4 种药物的清除率数据,开发并评价了 3 种外推儿童清除率的方法。第一种方法是基于 2 岁以上儿童至成人的范围,使用简单比例法(SA)模型建立,该模型估计了系数和指数。然后,我们开发了统一多步单指数(MSE)和多步体重相关指数(MBDE)模型。这 2 种新方法的主要步骤包括为未观察到的新人群(如早产儿、足月儿和婴儿)生成预测清除率。后续步骤包括将预测清除率与年龄较大儿童和成人的实际 PK 数据结合。随后,使用这 3 种模型预测了≤2 岁儿童(N = 278)的药物清除率。SA、MSE 和 MBDE 分别预测药物清除率的平均绝对误差为 29.6、14.2 和 12.9。SA、MSE 和 MBDE 的均方根误差分别为 65.9、29.8 和 24.7。当使用 SA、MSE 和 MBDE 模型外推药物清除率时,分别有 41%、72%和 74%的儿童清除率数据在观察值的 0.5 至 1.5 倍范围内。本文提出的多步统一外推方法改善了从早产儿到 2 岁儿童的清除率预测,可能在儿科首次剂量选择中具有实际应用价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验