Department of Information Management, Beijing Jiaotong University, Beijing 100044, China.
Int J Environ Res Public Health. 2018 Feb 27;15(3):402. doi: 10.3390/ijerph15030402.
Chinese Electronic Medical Records (EMRs) contains a large number of complex medical free text which includes a variety of information, such as temporal information, patients' symptoms and laboratory data. However, as an important knowledge base, these unstructured text data in EMR are hard to process directly by computer to support further medical research. This paper proposes a novel text structuring method to extract knowledge from EMR texts and reorganize them in chronological order according to the temporal information in the text. By implementing some entropy-based algorithms as contrast, experiments evaluate the performance of the proposed method, which indicates the new method can significantly reduce the complexity of EMR text. This work is significant in structuring the EMR free text into temporal-structured data for further medical analysis.
中文电子病历(EMR)包含大量复杂的医学自由文本,其中包含各种信息,如时间信息、患者症状和实验室数据。然而,作为一个重要的知识库,这些 EMR 中的非结构化文本数据很难直接由计算机进行处理,以支持进一步的医学研究。本文提出了一种新颖的文本结构方法,从 EMR 文本中提取知识,并根据文本中的时间信息按时间顺序对其进行重新组织。通过实现一些基于熵的算法作为对比,实验评估了所提出方法的性能,结果表明,该新方法可以显著降低 EMR 文本的复杂性。这项工作对于将 EMR 自由文本构建成时间结构化数据以进行进一步的医学分析具有重要意义。
Int J Environ Res Public Health. 2018-2-27
Beijing Da Xue Xue Bao Yi Xue Ban. 2018-4-18
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2010-8
BMC Med Inform Decis Mak. 2016-8-20
Stud Health Technol Inform. 2015
J Am Med Inform Assoc. 2016-9
BMC Med Inform Decis Mak. 2016-8-30
BMC Med Inform Decis Mak. 2019-4-9
J Biomed Semantics. 2016-9-26
Comput Methods Programs Biomed. 2016-5
PLoS One. 2015-8-21
IEEE J Biomed Health Inform. 2015-7-10
BMC Med Inform Decis Mak. 2014-5-9
Bioinformatics. 2013-8-31