文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于时间信息的中文医学文本结构方法。

A Text Structuring Method for Chinese Medical Text Based on Temporal Information.

机构信息

Department of Information Management, Beijing Jiaotong University, Beijing 100044, China.

出版信息

Int J Environ Res Public Health. 2018 Feb 27;15(3):402. doi: 10.3390/ijerph15030402.


DOI:10.3390/ijerph15030402
PMID:29495428
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5876947/
Abstract

Chinese Electronic Medical Records (EMRs) contains a large number of complex medical free text which includes a variety of information, such as temporal information, patients' symptoms and laboratory data. However, as an important knowledge base, these unstructured text data in EMR are hard to process directly by computer to support further medical research. This paper proposes a novel text structuring method to extract knowledge from EMR texts and reorganize them in chronological order according to the temporal information in the text. By implementing some entropy-based algorithms as contrast, experiments evaluate the performance of the proposed method, which indicates the new method can significantly reduce the complexity of EMR text. This work is significant in structuring the EMR free text into temporal-structured data for further medical analysis.

摘要

中文电子病历(EMR)包含大量复杂的医学自由文本,其中包含各种信息,如时间信息、患者症状和实验室数据。然而,作为一个重要的知识库,这些 EMR 中的非结构化文本数据很难直接由计算机进行处理,以支持进一步的医学研究。本文提出了一种新颖的文本结构方法,从 EMR 文本中提取知识,并根据文本中的时间信息按时间顺序对其进行重新组织。通过实现一些基于熵的算法作为对比,实验评估了所提出方法的性能,结果表明,该新方法可以显著降低 EMR 文本的复杂性。这项工作对于将 EMR 自由文本构建成时间结构化数据以进行进一步的医学分析具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb1f/5876947/fe9f5f09e748/ijerph-15-00402-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb1f/5876947/a24979a58775/ijerph-15-00402-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb1f/5876947/0b9c6e4bb087/ijerph-15-00402-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb1f/5876947/9f9b1b113817/ijerph-15-00402-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb1f/5876947/0d8da1424412/ijerph-15-00402-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb1f/5876947/e3b5a07ca02b/ijerph-15-00402-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb1f/5876947/fe9f5f09e748/ijerph-15-00402-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb1f/5876947/a24979a58775/ijerph-15-00402-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb1f/5876947/0b9c6e4bb087/ijerph-15-00402-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb1f/5876947/9f9b1b113817/ijerph-15-00402-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb1f/5876947/0d8da1424412/ijerph-15-00402-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb1f/5876947/e3b5a07ca02b/ijerph-15-00402-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb1f/5876947/fe9f5f09e748/ijerph-15-00402-g006.jpg

相似文献

[1]
A Text Structuring Method for Chinese Medical Text Based on Temporal Information.

Int J Environ Res Public Health. 2018-2-27

[2]
[A customized method for information extraction from unstructured text data in the electronic medical records].

Beijing Da Xue Xue Bao Yi Xue Ban. 2018-4-18

[3]
[Research on information extraction of electronic medical records in Chinese].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2010-8

[4]
Development and validation of method for defining conditions using Chinese electronic medical record.

BMC Med Inform Decis Mak. 2016-8-20

[5]
Development of Markup Language for Medical Record Charting: A Charting Language.

Stud Health Technol Inform. 2015

[6]
A method for cohort selection of cardiovascular disease records from an electronic health record system.

Int J Med Inform. 2017-6

[7]
Extracting information from the text of electronic medical records to improve case detection: a systematic review.

J Am Med Inform Assoc. 2016-9

[8]
A hybrid solution for extracting structured medical information from unstructured data in medical records via a double-reading/entry system.

BMC Med Inform Decis Mak. 2016-8-30

[9]
Improving Chinese electronic medical record retrieval by field weight assignment, negation detection, and re-ranking.

J Biomed Inform. 2021-7

[10]
Attention-based deep residual learning network for entity relation extraction in Chinese EMRs.

BMC Med Inform Decis Mak. 2019-4-9

引用本文的文献

[1]
Validation of an algorithm to evaluate the appropriateness of outpatient antibiotic prescribing using big data of Chinese diagnosis text.

BMJ Open. 2020-3-19

本文引用的文献

[1]
Expansion of medical vocabularies using distributional semantics on Japanese patient blogs.

J Biomed Semantics. 2016-9-26

[2]
Temporal data representation, normalization, extraction, and reasoning: A review from clinical domain.

Comput Methods Programs Biomed. 2016-5

[3]
Design and Development of a Sharable Clinical Decision Support System Based on a Semantic Web Service Framework.

J Med Syst. 2016-3-22

[4]
Modelling and extraction of variability in free-text medication prescriptions from an anonymised primary care electronic medical record research database.

BMC Med Inform Decis Mak. 2016-2-9

[5]
Data-Driven Information Extraction from Chinese Electronic Medical Records.

PLoS One. 2015-8-21

[6]
Big data for health.

IEEE J Biomed Health Inform. 2015-7-10

[7]
Incorporating temporal EHR data in predictive models for risk stratification of renal function deterioration.

J Biomed Inform. 2015-2

[8]
A novel method for studying the temporal relationship between type 2 diabetes mellitus and cancer using the electronic medical record.

BMC Med Inform Decis Mak. 2014-5-9

[9]
Quantifying the complexity of medical research.

Bioinformatics. 2013-8-31

[10]
Evaluation of data completeness in the electronic health record for the purpose of patient recruitment into clinical trials: a retrospective analysis of element presence.

BMC Med Inform Decis Mak. 2013-3-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索