Pharmacokinetics Dynamics and Metabolism, Medicine Design, Pfizer Global Research and Development, Pfizer Inc., Cambridge, Massachusetts (A.F.E.-K.); and Pharmacokinetics Dynamics and Metabolism, Medicine Design, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut (M.V.S.V.).
Pharmacokinetics Dynamics and Metabolism, Medicine Design, Pfizer Global Research and Development, Pfizer Inc., Cambridge, Massachusetts (A.F.E.-K.); and Pharmacokinetics Dynamics and Metabolism, Medicine Design, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut (M.V.S.V.)
Drug Metab Dispos. 2018 May;46(5):729-739. doi: 10.1124/dmd.117.080044. Epub 2018 Mar 1.
Membrane transporters play an important role in the absorption, distribution, clearance, and elimination of drugs. Supported by the pharmacokinetics data in human, several transporters including organic anion transporting polypeptide (OATP)1B1, OATP1B3, organic anion transporter (OAT)1, OAT3, organic cation transporter (OCT)2, multidrug and toxin extrusion (MATE) proteins, P-glycoprotein and breast cancer resistance protein are suggested to be of clinical relevance. An early understanding of the transporter role in drug disposition and clearance allows reliable prediction/evaluation of pharmacokinetics and changes due to drug-drug interactions (DDIs) or genetic polymorphisms. We recently proposed an extended clearance classification system (ECCS) based on simple drug properties (i.e., ionization, permeability, and molecular weight) to predict the predominant clearance mechanism. According to this framework, systemic clearance of class 1B and 3B drugs is likely determined by the OATP-mediated hepatic uptake. Class 3A and 4 drugs, and certain class 3B drugs, are predominantly cleared by renal, wherein, OAT1, OAT3, OCT2, and MATE proteins could contribute to their active renal secretion. Intestinal efflux and uptake transporters largely influence the oral pharmacokinetics of class 3A, 3B, and 4 drugs. We discuss the paradigm of applying the ECCS framework in mapping the role of clinically relevant drug transporters in early discovery and development; thereby implementing the right strategy to allow optimization of drug exposure and evaluation of clinical risk due to DDIs and pharmacogenomics.
膜转运蛋白在药物的吸收、分布、清除和消除中发挥着重要作用。在人体药代动力学数据的支持下,几种转运蛋白,包括有机阴离子转运多肽(OATP)1B1、OATP1B3、有机阴离子转运体(OAT)1、OAT3、有机阳离子转运体(OCT)2、多药和毒素外排(MATE)蛋白、P-糖蛋白和乳腺癌耐药蛋白,被认为具有临床相关性。早期了解转运蛋白在药物处置和清除中的作用,可以可靠地预测/评估药代动力学和因药物-药物相互作用(DDI)或遗传多态性引起的变化。我们最近提出了一种基于简单药物特性(即离解度、通透性和分子量)的扩展清除分类系统(ECCS),以预测主要的清除机制。根据这一框架,1B 类和 3B 类药物的全身清除率可能由 OATP 介导的肝摄取决定。3A 类和 4 类药物以及某些 3B 类药物主要通过肾脏清除,其中 OAT1、OAT3、OCT2 和 MATE 蛋白可能有助于它们的主动肾分泌。肠外排和摄取转运蛋白在很大程度上影响 3A、3B 和 4 类药物的口服药代动力学。我们讨论了应用 ECCS 框架来确定临床相关药物转运蛋白在早期发现和开发中的作用的范例;从而实施正确的策略,以优化药物暴露,并评估因 DDI 和药物基因组学引起的临床风险。