Suppr超能文献

[基于体内数据对细胞色素P450酶抑制和诱导引起的药物相互作用进行定量预测及其在日常临床实践中的应用——药代动力学相互作用意义分类系统(PISCS)的建议]

[Quantitative Prediction of Drug-Drug Interaction Caused by CYP Inhibition and Induction from In Vivo Data and Its Application in Daily Clinical Practices-Proposal for the Pharmacokinetic Interaction Significance Classification System (PISCS)].

作者信息

Ohno Yoshiyuki

机构信息

Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo.

出版信息

Yakugaku Zasshi. 2018;138(3):337-345. doi: 10.1248/yakushi.17-00191-1.

Abstract

Drug-drug interactions (DDIs) can affect the clearance of various drugs from the body; however, these effects are difficult to sufficiently evaluate in clinical studies. This article outlines our approach to improving methods for evaluating and providing drug information relative to the effects of DDIs. In a previous study, total exposure changes to many substrate drugs of CYP caused by the co-administration of inhibitor or inducer drugs were successfully predicted using in vivo data. There are two parameters for the prediction: the contribution ratio of the enzyme to oral clearance for substrates (CR), and either the inhibition ratio for inhibitors (IR) or the increase in clearance of substrates produced by induction (IC). To apply these predictions in daily pharmacotherapy, the clinical significance of any pharmacokinetic changes must be carefully evaluated. We constructed a pharmacokinetic interaction significance classification system (PISCS) in which the clinical significance of DDIs was considered in a systematic manner, according to pharmacokinetic changes. The PISCS suggests that many current 'alert' classifications are potentially inappropriate, especially for drug combinations in which pharmacokinetics have not yet been evaluated. It is expected that PISCS would contribute to constructing a reliable system to alert pharmacists, physicians and consumers of a broad range of pharmacokinetic DDIs in order to more safely manage daily clinical practices.

摘要

药物相互作用(DDIs)会影响各种药物在体内的清除;然而,这些影响在临床研究中难以得到充分评估。本文概述了我们改进评估方法以及提供与药物相互作用影响相关药物信息的方法。在之前的一项研究中,利用体内数据成功预测了由抑制剂或诱导剂药物共同给药导致的许多细胞色素P450(CYP)底物药物的总暴露变化。预测有两个参数:酶对底物口服清除率的贡献率(CR),以及抑制剂的抑制率(IR)或诱导产生的底物清除率增加(IC)。为了在日常药物治疗中应用这些预测,必须仔细评估任何药代动力学变化的临床意义。我们构建了一个药代动力学相互作用意义分类系统(PISCS),其中根据药代动力学变化以系统的方式考虑药物相互作用的临床意义。PISCS表明,许多当前的“警示”分类可能并不合适,尤其是对于尚未评估药代动力学的药物组合。预计PISCS将有助于构建一个可靠的系统,以提醒药剂师、医生和消费者注意广泛的药代动力学药物相互作用,从而更安全地管理日常临床实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验