Semin Adrien, Schmidt Kersten
Brandenburgische Technische Universität Cottbus-Senftenberg, Institut für Mathematik, Platz der Deutschen Einheit 1, 03046 Cottbus, Germany.
Technische Universität Darmstadt, Fachbereich Mathematik, AG Numerik und Wissenschaftliches Rechnen, Dolivostrasse 15, 64293 Darmstadt, Germany.
Proc Math Phys Eng Sci. 2018 Feb;474(2210):20170708. doi: 10.1098/rspa.2017.0708. Epub 2018 Feb 28.
The direct numerical simulation of the acoustic wave propagation in multiperforated absorbers with hundreds or thousands of tiny openings would result in a huge number of basis functions to resolve the microstructure. One is, however, primarily interested in effective and so homogenized transmission and absorption properties and how they are influenced by microstructure and its endpoints. For this, we introduce the surface homogenization that asymptotically decomposes the solution in a macroscopic part, a boundary layer corrector close to the interface and a near-field part close to its ends. The effective transmission and absorption properties are expressed by transmission conditions for the macroscopic solution on an infinitely thin interface and corner conditions at its endpoints to ensure the correct singular behaviour, which are intrinsic to the microstructure. We study and give details on the computation of the effective parameters for an inviscid and a viscous model and show their dependence on geometrical properties of the microstructure for the example of Helmholtz equation. Numerical experiments indicate that with the obtained macroscopic solution representation one can achieve an high accuracy for low and high porosities as well as for viscous boundary conditions while using only a small number of basis functions.
对具有成百上千个微小孔洞的多孔吸声器中的声波传播进行直接数值模拟,会产生大量用于解析微观结构的基函数。然而,人们主要感兴趣的是有效的、因此是均匀化的传输和吸收特性,以及它们如何受到微观结构及其端点的影响。为此,我们引入表面均匀化,它将解渐近地分解为宏观部分、靠近界面的边界层校正项和靠近端点的近场部分。有效的传输和吸收特性通过无限薄界面上宏观解的传输条件以及端点处的角条件来表示,以确保正确的奇异行为,这是微观结构所固有的。我们研究并详细给出了无粘模型和粘性模型有效参数的计算方法,并以亥姆霍兹方程为例展示了它们对微观结构几何特性的依赖性。数值实验表明,利用所获得的宏观解表示,在仅使用少量基函数的情况下,对于低孔隙率和高孔隙率以及粘性边界条件都能实现高精度。