Suppr超能文献

罗博 1-硫酸乙酰肝素相互作用的 traveling wave 离子淌度光谱 (TWIMS) 研究。

A Traveling Wave Ion Mobility Spectrometry (TWIMS) Study of the Robo1-Heparan Sulfate Interaction.

机构信息

Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.

Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA.

出版信息

J Am Soc Mass Spectrom. 2018 Jun;29(6):1153-1165. doi: 10.1007/s13361-018-1903-4. Epub 2018 Mar 8.

Abstract

Roundabout 1 (Robo1) interacts with its receptor Slit to regulate axon guidance, axon branching, and dendritic development in the nervous system and to regulate morphogenesis and many cell functions in the nonneuronal tissues. This interaction is known to be critically regulated by heparan sulfate (HS). Previous studies suggest that HS is required to promote the binding of Robo1 to Slit to form the minimal signaling complex, but the molecular details and the structural requirements of HS for this interaction are still unclear. Here, we describe the application of traveling wave ion mobility spectrometry (TWIMS) to study the conformational details of the Robo1-HS interaction. The results suggest that Robo1 exists in two conformations that differ by their compactness and capability to interact with HS. The results also suggest that the highly flexible interdomain hinge region connecting the Ig1 and Ig2 domains of Robo1 plays an important functional role in promoting the Robo1-Slit interaction. Moreover, variations in the sulfation pattern and size of HS were found to affect its binding affinity and selectivity to interact with different conformations of Robo1. Both MS measurements and CIU experiments show that the Robo1-HS interaction requires the presence of a specific size and pattern of modification of HS. Furthermore, the effect of N-glycosylation on the conformation of Robo1 and its binding modes with HS is reported. Graphical Abstract ᅟ.

摘要

盘旋蛋白 1(Robo1)通过与其受体 Slit 相互作用,调节神经系统中的轴突导向、轴突分支和树突发育,并调节非神经元组织中的形态发生和许多细胞功能。已知这种相互作用受到肝素硫酸酯(HS)的严格调控。先前的研究表明,HS 是促进 Robo1 与 Slit 结合形成最小信号复合物所必需的,但 HS 与该相互作用的分子细节和结构要求仍不清楚。在这里,我们描述了使用 traveling wave ion mobility spectrometry(TWIMS)来研究 Robo1-HS 相互作用的构象细节。结果表明,Robo1 存在两种构象,它们在紧凑性和与 HS 相互作用的能力上有所不同。结果还表明,连接 Robo1 的 Ig1 和 Ig2 结构域的高度灵活的结构域间铰链区域在促进 Robo1-Slit 相互作用方面发挥着重要的功能作用。此外,HS 的硫酸化模式和大小的变化被发现会影响其与 Robo1 不同构象的结合亲和力和选择性。MS 测量和 CIU 实验均表明,Robo1-HS 相互作用需要 HS 具有特定的大小和修饰模式。此外,还报告了 N-糖基化对 Robo1 构象及其与 HS 结合模式的影响。

相似文献

1
A Traveling Wave Ion Mobility Spectrometry (TWIMS) Study of the Robo1-Heparan Sulfate Interaction.
J Am Soc Mass Spectrom. 2018 Jun;29(6):1153-1165. doi: 10.1007/s13361-018-1903-4. Epub 2018 Mar 8.
2
Structural Aspects of Heparan Sulfate Binding to Robo1-Ig1-2.
ACS Chem Biol. 2016 Nov 18;11(11):3106-3113. doi: 10.1021/acschembio.6b00692. Epub 2016 Sep 29.
5
Characterization of the interaction between Robo1 and heparin and other glycosaminoglycans.
Biochimie. 2013 Dec;95(12):2345-53. doi: 10.1016/j.biochi.2013.08.018. Epub 2013 Aug 28.
6
Integrated Approach to Identify Heparan Sulfate Ligand Requirements of Robo1.
J Am Chem Soc. 2016 Oct 5;138(39):13059-13067. doi: 10.1021/jacs.6b08161. Epub 2016 Sep 27.
8
Minimal structural elements required for midline repulsive signaling and regulation of Drosophila Robo1.
PLoS One. 2020 Oct 22;15(10):e0241150. doi: 10.1371/journal.pone.0241150. eCollection 2020.
9
High structural resolution hydroxyl radical protein footprinting reveals an extended Robo1-heparin binding interface.
J Biol Chem. 2015 Apr 24;290(17):10729-40. doi: 10.1074/jbc.M115.648410. Epub 2015 Mar 9.

引用本文的文献

3
Mass Spectrometry-Based Techniques to Elucidate the Sugar Code.
Chem Rev. 2022 Apr 27;122(8):7840-7908. doi: 10.1021/acs.chemrev.1c00380. Epub 2021 Sep 7.
4
Developments in Mass Spectrometry for Glycosaminoglycan Analysis: A Review.
Mol Cell Proteomics. 2021;20:100025. doi: 10.1074/mcp.R120.002267. Epub 2021 Jan 6.
5
Collision-Induced Unfolding Is Sensitive to the Polarity of Proteins and Protein Complexes.
J Am Soc Mass Spectrom. 2019 Nov;30(11):2430-2437. doi: 10.1007/s13361-019-02326-z. Epub 2019 Sep 9.

本文引用的文献

2
Structural Aspects of Heparan Sulfate Binding to Robo1-Ig1-2.
ACS Chem Biol. 2016 Nov 18;11(11):3106-3113. doi: 10.1021/acschembio.6b00692. Epub 2016 Sep 29.
3
Integrated Approach to Identify Heparan Sulfate Ligand Requirements of Robo1.
J Am Chem Soc. 2016 Oct 5;138(39):13059-13067. doi: 10.1021/jacs.6b08161. Epub 2016 Sep 27.
4
In vivo functional analysis of Drosophila Robo1 immunoglobulin-like domains.
Neural Dev. 2016 Aug 18;11(1):15. doi: 10.1186/s13064-016-0071-0.
5
3D implementation of the symbol nomenclature for graphical representation of glycans.
Glycobiology. 2016 Aug;26(8):786-7. doi: 10.1093/glycob/cww076. Epub 2016 Aug 11.
6
Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald.
J Chem Theory Comput. 2013 Sep 10;9(9):3878-88. doi: 10.1021/ct400314y. Epub 2013 Aug 20.
7
PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data.
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95. doi: 10.1021/ct400341p. Epub 2013 Jun 25.
8
Symbol Nomenclature for Graphical Representations of Glycans.
Glycobiology. 2015 Dec;25(12):1323-4. doi: 10.1093/glycob/cwv091.
9
CIUSuite: A Quantitative Analysis Package for Collision Induced Unfolding Measurements of Gas-Phase Protein Ions.
Anal Chem. 2015 Nov 17;87(22):11516-22. doi: 10.1021/acs.analchem.5b03292. Epub 2015 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验