Suppr超能文献

二氧化碳作为绿色碳源用于合成碳笼包裹多孔硅作为高性能锂离子电池负极。

Carbon dioxide as a green carbon source for the synthesis of carbon cages encapsulating porous silicon as high performance lithium-ion battery anodes.

机构信息

State Key Lab of Silicon Materials and School of Materials Science and Engineering, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, People's Republic of China.

College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China.

出版信息

Nanoscale. 2018 Mar 28;10(12):5626-5633. doi: 10.1039/c7nr09599f. Epub 2018 Mar 12.

Abstract

Si/C composite is one of the most promising candidate materials for next-generation lithium-ion battery anodes. Herein, we demonstrate the novel structure of carbon cages encapsulating porous Si synthesized by the reaction between magnesium silicide (MgSi) and carbon dioxide (CO) and subsequent acid washing. Benefitting from the in situ deposition through magnesiothermic reduction of CO, the carbon cage seals the inner Si completely and shows higher graphitization than that obtained from the decomposition of acetylene. After removing MgO, pores are created, which can accommodate the volume change of the Si anode during the charge/discharge process. As the anode material for lithium-ion batteries, the porous Si/C electrode shows a charge capacity of ∼1124 mA h g after 100 cycles with 86.4% capacity retention at the current density of 0.4 A g. When the current density increases to 1.6 and 3.2 A g, the capacity can still be maintained at ∼860 and ∼460 mA h g, respectively. The prominent cycling and rate performance is contributed by the built-in space for Si expansion, static carbon cages that prevent penetration of electrolyte and stabilize the solid electrolyte interface (SEI) outside, and fast charge transport by the novel structure.

摘要

硅/碳复合材料是下一代锂离子电池阳极最有前途的候选材料之一。在此,我们展示了一种通过硅化镁(MgSi)与二氧化碳(CO)反应并随后进行酸洗合成的具有多孔硅的新型碳笼结构。得益于通过 CO 的镁热还原进行的原位沉积,碳笼完全密封了内部的 Si,并表现出比通过乙炔分解获得的更高的石墨化程度。除去 MgO 后,会产生孔,这可以容纳 Si 阳极在充放电过程中的体积变化。作为锂离子电池的阳极材料,多孔 Si/C 电极在 0.4 A g 的电流密度下循环 100 次后的充电容量约为 1124 mA h g,容量保持率为 86.4%。当电流密度增加到 1.6 和 3.2 A g 时,容量仍分别保持在约 860 和 460 mA h g。突出的循环和倍率性能归因于 Si 膨胀的内置空间、防止电解质渗透和稳定外部固体电解质界面(SEI)的静态碳笼,以及新型结构的快速电荷传输。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验