Laboratoire de Mécanique des Solides, C.N.R.S., École Polytechnique, University of Paris-Saclay, Palaiseau, France.
Nissan Motor Co., Ltd, Nissan Advanced Technology Center, Japan.
J Mech Behav Biomed Mater. 2018 May;81:178-194. doi: 10.1016/j.jmbbm.2017.12.021. Epub 2017 Dec 24.
This study aims constitutive modeling of rate dependent anisotropic viscoelastic brain tissue that experiences large deformation during accidental impact. Many experimental studies confirm that brain parenchyma mechanisms are strongly influenced by anisotropy, nonlinear viscoelasticity, rate dependent loading/unloading and tension-compression asymmetry of the soft brain tissues. We present a rigorous thermodynamically consistent phenomenological approach to capture these mechanisms in a single model. Model parameters are calibrated from the experiments, and mechanical responses are predicted for different loading conditions. We consider a 2-D fibrous circular tube geometry, an idealized form of a human head, to simulate shear stress distribution for a given boundary condition. Different orientations of the fibers are considered to investigate the influence of anisotropy on the shear stress. Finally, stretch rate dependency of stress responses for a particular fiber orientation is demonstrated.
本研究旨在对经历意外冲击时发生大变形的各向异性率相关黏弹性脑组织进行本构建模。许多实验研究证实,脑实质机制受到各向异性、非线性黏弹性、加载/卸载率相关以及软脑组织的拉压不对称性的强烈影响。我们提出了一种严格的热力学一致唯象方法,以在单个模型中捕获这些机制。模型参数通过实验进行校准,并针对不同的加载条件预测力学响应。我们考虑了二维纤维圆形管几何形状,这是人体头部的理想化形式,以模拟给定边界条件下的剪切应力分布。考虑了不同纤维方向以研究各向异性对剪切应力的影响。最后,展示了特定纤维方向的应力响应对拉伸率的依赖性。