Suppr超能文献

基于原始计数域低信号校正方案的低剂量锥形束 CT:性能评估和基于任务的参数优化(第二部分:基于任务的参数优化)。

Low-dose cone-beam CT via raw counts domain low-signal correction schemes: Performance assessment and task-based parameter optimization (Part II. Task-based parameter optimization).

机构信息

Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI, 53705, USA.

Department of Radiology, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792, USA.

出版信息

Med Phys. 2018 May;45(5):1957-1969. doi: 10.1002/mp.12855. Epub 2018 Apr 6.

Abstract

PURPOSE

Different low-signal correction (LSC) methods have been shown to efficiently reduce noise streaks and noise level in CT to provide acceptable images at low-radiation dose levels. These methods usually result in CT images with highly shift-variant and anisotropic spatial resolution and noise, which makes the parameter optimization process highly nontrivial. The purpose of this work was to develop a local task-based parameter optimization framework for LSC methods.

METHODS

Two well-known LSC methods, the adaptive trimmed mean (ATM) filter and the anisotropic diffusion (AD) filter, were used as examples to demonstrate how to use the task-based framework to optimize filter parameter selection. Two parameters, denoted by the set P, for each LSC method were included in the optimization problem. For the ATM filter, these parameters are the low- and high-signal threshold levels p and p ; for the AD filter, the parameters are the exponents δ and γ in the brightness gradient function. The detectability index d' under the non-prewhitening (NPW) mathematical observer model was selected as the metric for parameter optimization. The optimization problem was formulated as an unconstrained optimization problem that consisted of maximizing an objective function d'(P), where i and j correspond to the i-th imaging task and j-th spatial location, respectively. Since there is no explicit mathematical function to describe the dependence of d' on the set of parameters P for each LSC method, the optimization problem was solved via an experimentally measured d' map over a densely sampled parameter space. In this work, three high-contrast-high-frequency discrimination imaging tasks were defined to explore the parameter space of each of the LSC methods: a vertical bar pattern (task I), a horizontal bar pattern (task II), and a multidirectional feature (task III). Two spatial locations were considered for the analysis, a posterior region-of-interest (ROI) located within the noise streaks region and an anterior ROI, located further from the noise streaks region. Optimal results derived from the task-based detectability index metric were compared to other operating points in the parameter space with different noise and spatial resolution trade-offs.

RESULTS

The optimal operating points determined through the d' metric depended on the interplay between the major spatial frequency components of each imaging task and the highly shift-variant and anisotropic noise and spatial resolution properties associated with each operating point in the LSC parameter space. This interplay influenced imaging performance the most when the major spatial frequency component of a given imaging task coincided with the direction of spatial resolution loss or with the dominant noise spatial frequency component; this was the case of imaging task II. The performance of imaging tasks I and III was influenced by this interplay in a smaller scale than imaging task II, since the major frequency component of task I was perpendicular to imaging task II, and because imaging task III did not have strong directional dependence. For both LSC methods, there was a strong dependence of the overall d' magnitude and shape of the contours on the spatial location within the phantom, particularly for imaging tasks II and III. The d' value obtained at the optimal operating point for each spatial location and imaging task was similar when comparing the LSC methods studied in this work.

CONCLUSIONS

A local task-based detectability framework to optimize the selection of parameters for LSC methods was developed. The framework takes into account the potential shift-variant and anisotropic spatial resolution and noise properties to maximize the imaging performance of the CT system. Optimal parameters for a given LSC method depend strongly on the spatial location within the image object.

摘要

目的

不同的低信号校正(LSC)方法已被证明可以有效地减少 CT 中的噪声条纹和噪声水平,从而在低辐射剂量水平下提供可接受的图像。这些方法通常会导致 CT 图像具有高度位移变化和各向异性的空间分辨率和噪声,这使得参数优化过程非常复杂。本研究的目的是开发一种基于任务的 LSC 方法的局部参数优化框架。

方法

以两种著名的 LSC 方法,自适应修剪均值(ATM)滤波器和各向异性扩散(AD)滤波器为例,演示如何使用基于任务的框架优化滤波器参数选择。每个 LSC 方法都包含两个参数,记为 P。对于 ATM 滤波器,这些参数是低信号和高信号阈值水平 p 和 p;对于 AD 滤波器,参数是亮度梯度函数中的指数 δ 和 γ。非预白化(NPW)数学观测器模型下的检测指数 d'被选为参数优化的度量标准。优化问题被表述为一个无约束优化问题,即最大化目标函数 d'(P),其中 i 和 j 分别对应于第 i 个成像任务和第 j 个空间位置。由于没有显式的数学函数来描述每个 LSC 方法的 d'与参数集 P 的依赖关系,因此通过在密集采样的参数空间上测量 d' 图来解决优化问题。在这项工作中,定义了三个高对比度-高频率分辨成像任务来探索每个 LSC 方法的参数空间:垂直条模式(任务 I)、水平条模式(任务 II)和多方向特征(任务 III)。分析考虑了两个空间位置,一个位于噪声条纹区域内的后 ROI 和一个位于噪声条纹区域外的前 ROI。基于任务的可检测性指数度量标准得出的最优结果与参数空间中的其他工作点进行了比较,这些工作点具有不同的噪声和空间分辨率权衡。

结果

基于 d' 度量标准确定的最优工作点取决于每个成像任务的主要空间频率分量与 LSC 参数空间中每个工作点的高度位移变化和各向异性噪声和空间分辨率特性之间的相互作用。当给定成像任务的主要空间频率分量与空间分辨率损失的方向或主导噪声空间频率分量一致时,这种相互作用对成像性能的影响最大;这种情况是成像任务 II。成像任务 I 和 III 的性能受这种相互作用的影响较小,因为任务 I 的主要频率分量垂直于任务 II,并且任务 III 没有强烈的方向依赖性。对于两种 LSC 方法,参数空间中每个工作点的整体 d' 幅度和轮廓形状都强烈依赖于体模内的空间位置,特别是对于成像任务 II 和 III。对于每个空间位置和成像任务,在最佳工作点获得的 d' 值在比较本研究中研究的 LSC 方法时是相似的。

结论

开发了一种基于任务的局部可检测性框架来优化 LSC 方法的参数选择。该框架考虑了潜在的位移变化和各向异性的空间分辨率和噪声特性,以最大限度地提高 CT 系统的成像性能。给定 LSC 方法的最佳参数强烈依赖于图像物体内的空间位置。

相似文献

6
Impact of noise reduction schemes on quantitative accuracy of CT numbers.
Med Phys. 2019 Jul;46(7):3013-3024. doi: 10.1002/mp.13549. Epub 2019 May 21.
10
Task-driven image acquisition and reconstruction in cone-beam CT.
Phys Med Biol. 2015 Apr 21;60(8):3129-50. doi: 10.1088/0031-9155/60/8/3129. Epub 2015 Mar 24.

本文引用的文献

2
Modified ideal observer model (MIOM) for high-contrast and high-spatial resolution CT imaging tasks.
Med Phys. 2017 Sep;44(9):4496-4505. doi: 10.1002/mp.12404. Epub 2017 Jul 18.
3
Task-driven optimization of CT tube current modulation and regularization in model-based iterative reconstruction.
Phys Med Biol. 2017 Jun 21;62(12):4777-4797. doi: 10.1088/1361-6560/aa6a97. Epub 2017 Mar 31.
6
Initial results from a prototype whole-body photon-counting computed tomography system.
Proc SPIE Int Soc Opt Eng. 2015;9412. doi: 10.1117/12.2082739.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验