Suppr超能文献

在 LDLrApoB 小鼠模型中,致糖尿病、促钙化饮食会导致主动脉瓣疾病的发生。

Increased Calcific Aortic Valve Disease in response to a diabetogenic, procalcific diet in the LDLrApoB mouse model.

机构信息

Department of Bioengineering, University of Washington, Seattle, WA 98195.

Department of Bioengineering, University of Washington, Seattle, WA 98195.

出版信息

Cardiovasc Pathol. 2018 May-Jun;34:28-37. doi: 10.1016/j.carpath.2018.02.002. Epub 2018 Feb 15.

Abstract

OBJECTIVE

Calcific aortic valve disease (CAVD) is a major cause of aortic stenosis (AS) and cardiac insufficiency. Patients with type II diabetes mellitus (T2DM) are at heightened risk for CAVD, and their valves have greater calcification than nondiabetic valves. No drugs to prevent or treat CAVD exist, and animal models that might help identify therapeutic targets are sorely lacking. To develop an animal model mimicking the structural and functional features of CAVD in people with T2DM, we tested a diabetogenic, procalcific diet and its effect on the incidence and severity of CAVD and AS in the, LDLrApoB mouse model.

RESULTS

LDLrApoB mice fed a customized diabetogenic, procalcific diet (DB diet) developed hyperglycemia, hyperlipidemia, increased atherosclerosis, and obesity when compared with normal chow fed LDLrApoB mice, indicating the development of T2DM and metabolic syndrome. Transthoracic echocardiography revealed that LDLrApoB mice fed the DB diet had 77% incidence of hemodynamically significant AS, and developed thickened aortic valve leaflets and calcification in both valve leaflets and hinge regions. In comparison, normal chow (NC) fed LDLrApoB mice had 38% incidence of AS, thinner valve leaflets and very little valve and hinge calcification. Further, the DB diet fed mice with AS showed significantly impaired cardiac function as determined by reduced ejection fraction and fractional shortening. In vitro mineralization experiments demonstrated that elevated glucose in culture medium enhanced valve interstitial cell (VIC) matrix calcium deposition.

CONCLUSIONS

By manipulating the diet we developed a new model of CAVD in T2DM, hyperlipidemic LDLrApoB that shows several important functional, and structural features similar to CAVD found in people with T2DM and atherosclerosis including AS, cardiac dysfunction, and inflamed and calcified thickened valve cusps. Importantly, the high AS incidence of this diabetic model may be useful for mechanistic and translational studies aimed at development of novel treatments for CAVD.

摘要

目的

钙化性主动脉瓣疾病(CAVD)是主动脉瓣狭窄(AS)和心脏功能不全的主要原因。患有 2 型糖尿病(T2DM)的患者患 CAVD 的风险增加,并且他们的瓣膜比非糖尿病患者的瓣膜有更大的钙化。目前尚无预防或治疗 CAVD 的药物,而有助于确定治疗靶点的动物模型则非常缺乏。为了开发一种模拟 2 型糖尿病患者 CAVD 的结构和功能特征的动物模型,我们测试了一种致糖尿病、促钙化饮食及其对 LDLrApoB 小鼠模型中 CAVD 和 AS 发生率和严重程度的影响。

结果

与正常饮食喂养的 LDLrApoB 小鼠相比,喂食定制的致糖尿病、促钙化饮食(DB 饮食)的 LDLrApoB 小鼠出现高血糖、高血脂、动脉粥样硬化增加和肥胖,表明发生了 2 型糖尿病和代谢综合征。经胸超声心动图显示,喂食 DB 饮食的 LDLrApoB 小鼠发生血流动力学显著 AS 的发生率为 77%,并出现主动脉瓣叶增厚和瓣叶及铰链区钙化。相比之下,正常饮食喂养的 LDLrApoB 小鼠发生 AS 的发生率为 38%,瓣叶较薄,瓣叶和铰链钙化很少。此外,DB 饮食喂养的 AS 小鼠表现出明显的心脏功能受损,表现为射血分数和缩短分数降低。体外矿化实验表明,培养基中葡萄糖水平升高可增强瓣膜间质细胞(VIC)基质钙沉积。

结论

通过饮食干预,我们在 LDLrApoB 高脂血症 2 型糖尿病小鼠中建立了一种新的 CAVD 模型,该模型具有几种重要的功能和结构特征,类似于在 2 型糖尿病和动脉粥样硬化患者中发现的 CAVD,包括 AS、心脏功能障碍以及炎症和钙化增厚的瓣叶。重要的是,该糖尿病模型的高 AS 发生率可能对旨在开发 CAVD 新型治疗方法的机制和转化研究有用。

相似文献

1
Increased Calcific Aortic Valve Disease in response to a diabetogenic, procalcific diet in the LDLrApoB mouse model.
Cardiovasc Pathol. 2018 May-Jun;34:28-37. doi: 10.1016/j.carpath.2018.02.002. Epub 2018 Feb 15.
2
Early development of calcific aortic valve disease and left ventricular hypertrophy in a mouse model of combined dyslipidemia and type 2 diabetes mellitus.
Arterioscler Thromb Vasc Biol. 2014 Oct;34(10):2283-91. doi: 10.1161/ATVBAHA.114.304205. Epub 2014 Aug 14.
3
Menaquinone 4 increases plasma lipid levels in hypercholesterolemic mice.
Sci Rep. 2021 Feb 4;11(1):3014. doi: 10.1038/s41598-021-82724-0.
4
Osteoprotegerin inhibits aortic valve calcification and preserves valve function in hypercholesterolemic mice.
PLoS One. 2013 Jun 6;8(6):e65201. doi: 10.1371/journal.pone.0065201. Print 2013.
5
AVCAPIR: A Novel Procalcific PIWI-Interacting RNA in Calcific Aortic Valve Disease.
Circulation. 2024 May 14;149(20):1578-1597. doi: 10.1161/CIRCULATIONAHA.123.065213. Epub 2024 Jan 23.
6
Regular exercise or changing diet does not influence aortic valve disease progression in LDLR deficient mice.
PLoS One. 2012;7(5):e37298. doi: 10.1371/journal.pone.0037298. Epub 2012 May 14.
7
Pioglitazone attenuates valvular calcification induced by hypercholesterolemia.
Arterioscler Thromb Vasc Biol. 2013 Mar;33(3):523-32. doi: 10.1161/ATVBAHA.112.300794. Epub 2013 Jan 3.
8
Calcific aortic valve stenosis in old hypercholesterolemic mice.
Circulation. 2006 Nov 7;114(19):2065-9. doi: 10.1161/CIRCULATIONAHA.106.634139. Epub 2006 Oct 30.
9
Bone Morphogenetic Protein Signaling Is Required for Aortic Valve Calcification.
Arterioscler Thromb Vasc Biol. 2016 Jul;36(7):1398-405. doi: 10.1161/ATVBAHA.116.307526. Epub 2016 May 19.

引用本文的文献

1
Diabetes and calcific aortic valve disease: controversy of clinical outcomes in diabetes after aortic valve replacement.
Front Endocrinol (Lausanne). 2025 Jul 30;16:1577762. doi: 10.3389/fendo.2025.1577762. eCollection 2025.
2
Diabetes and calcific aortic valve disease: implications of glucose-lowering medication as potential therapy.
Front Pharmacol. 2025 Apr 28;16:1583267. doi: 10.3389/fphar.2025.1583267. eCollection 2025.
6
Targeted Radiation Exposure Induces Accelerated Aortic Valve Remodeling in ApoE Mice.
J Clin Med. 2023 Sep 8;12(18):5854. doi: 10.3390/jcm12185854.
7
Risk Factors for Calcific Aortic Valve Disease in Afghan Population.
Vasc Health Risk Manag. 2022 Aug 18;18:643-652. doi: 10.2147/VHRM.S376955. eCollection 2022.
8
S2 Heart Sound Detects Aortic Valve Calcification Independent of Hemodynamic Changes in Mice.
Front Cardiovasc Med. 2022 May 25;9:809301. doi: 10.3389/fcvm.2022.809301. eCollection 2022.
9
Clinical characteristics of severe aortic stenosis patients combined with diabetes mellitus after transcatheter aortic valve replacement and short-term outcome.
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022 Mar 28;47(3):309-318. doi: 10.11817/j.issn.1672-7347.2022.210357.
10
Role of Runx2 in Calcific Aortic Valve Disease in Mouse Models.
Front Cardiovasc Med. 2021 Oct 29;8:687210. doi: 10.3389/fcvm.2021.687210. eCollection 2021.

本文引用的文献

1
Premature Valvular Heart Disease in Homozygous Familial Hypercholesterolemia.
Cholesterol. 2017;2017:3685265. doi: 10.1155/2017/3685265. Epub 2017 Jul 6.
3
Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus.
Arterioscler Thromb Vasc Biol. 2017 Feb;37(2):191-204. doi: 10.1161/ATVBAHA.116.306256. Epub 2016 Dec 1.
5
Comparison of Quantity of Calcific Deposits by Multidetector Computed Tomography in the Aortic Valve and Coronary Arteries.
Am J Cardiol. 2016 Nov 15;118(10):1533-1538. doi: 10.1016/j.amjcard.2016.08.021. Epub 2016 Aug 23.
7
Predictors of Rapid Progression and Clinical Outcome of Asymptomatic Severe Aortic Stenosis.
Circ J. 2016 Jul 25;80(8):1863-9. doi: 10.1253/circj.CJ-16-0333. Epub 2016 Jun 21.
8
Calcific aortic stenosis.
Nat Rev Dis Primers. 2016 Mar 3;2:16006. doi: 10.1038/nrdp.2016.6.
9
Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association.
Circulation. 2016 Jan 26;133(4):e38-360. doi: 10.1161/CIR.0000000000000350. Epub 2015 Dec 16.
10
Heart disease and stroke statistics--2015 update: a report from the American Heart Association.
Circulation. 2015 Jan 27;131(4):e29-322. doi: 10.1161/CIR.0000000000000152. Epub 2014 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验