Suppr超能文献

几种物种肺泡Ⅱ型细胞中高度有序颗粒的超微结构

Ultrastructure of Highly Ordered Granules in Alveolar Type II Cells in Several Species.

作者信息

Miller Marian L, Porollo Aleksey, Wert Susan

机构信息

Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, Ohio.

Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio.

出版信息

Anat Rec (Hoboken). 2018 Jul;301(7):1290-1302. doi: 10.1002/ar.23805. Epub 2018 Apr 6.

Abstract

Alveolar Type II cells from seven mammalian species were examined for a protein in the rough endoplasmic reticulum (RER), which showed a multilayered, repeating motif. Each motif, 100 nm in width, comprised two parallel outer dense layers, a less dense central layer, and often 1-3 faint layers on either side of the latter. Outer layers showed periodicities at 3-4 densities/100 nm of width, while layers on either side of the central layer showed 5-7 densities/100 nm of width. RER membranes were ribosome-free when parallel to these layers, but showed four ribosomes per motif at the growing ends: one ribosome at each outer dense layer, and one on either side of the less dense central layer. Granules appeared as single or as multiple motifs, stacked, curved, folded, or branching together within the same RER profile. Hexagons of around 30 nm in diameter with central densities were seen in tangential cuts of outer dense layers. Granule incidence varied: guinea pig > ferret > dog. Possible homologous structures occurred in rabbit and cat, but not in rat or mouse. Surfactant protein A (SP-A), a C-type lectin produced in Type II cells, forms trimers and bouquet-like 18-mer and can oligomerize further. Two pairs of SP-A 18-mers with carbohydrate recognition domains pointing inwardly and outwardly, stacked vertically as a column of four molecules, then repeated side by side in rows, approximated the size and layering patterns observed in these granules. Sequence analyses of SP-A from these species showed phylogenetic distances consistent with the observed occurrence and frequency of patterned granules. Anat Rec, 301:1290-1302, 2018. © 2018 Wiley Periodicals, Inc.

摘要

对七种哺乳动物的II型肺泡细胞进行了检查,以寻找粗面内质网(RER)中的一种蛋白质,该蛋白质呈现出多层重复基序。每个基序宽度为100 nm,由两个平行的外致密层、一个密度较低的中央层以及中央层两侧通常1 - 3个较淡的层组成。外层在宽度100 nm内呈现3 - 4个密度周期,而中央层两侧的层在宽度100 nm内呈现5 - 7个密度周期。当RER膜与这些层平行时无核糖体,但在生长末端每个基序有四个核糖体:每个外致密层一个核糖体,密度较低的中央层两侧各一个。颗粒在同一RER轮廓内呈现为单个或多个基序堆叠、弯曲、折叠或分支在一起。在外致密层的切向切片中可见直径约30 nm且具有中央密度的六边形。颗粒发生率各不相同:豚鼠>雪貂>狗。兔和猫中可能存在同源结构,但大鼠和小鼠中不存在。表面活性蛋白A(SP - A)是II型细胞产生的一种C型凝集素,形成三聚体和花束状18聚体,并可进一步寡聚化。两对碳水化合物识别域向内和向外的SP - A 18聚体,垂直堆叠成一列四个分子,然后并排重复排列成排,其大小和分层模式与这些颗粒中观察到的相近。对这些物种的SP - A进行序列分析显示,系统发育距离与观察到的有图案颗粒的出现情况和频率一致。《解剖学记录》,301:1290 - 1302,2018年。© 2018威利期刊公司。

相似文献

1
Ultrastructure of Highly Ordered Granules in Alveolar Type II Cells in Several Species.
Anat Rec (Hoboken). 2018 Jul;301(7):1290-1302. doi: 10.1002/ar.23805. Epub 2018 Apr 6.
2
Intracisternal protein in the type II pneumocyte of the ferret, guinea pig, and mongrel dog.
J Ultrastruct Mol Struct Res. 1986 Apr-Jun;95(1-3):131-41. doi: 10.1016/0889-1605(86)90036-4.
4
Chorion formation and ultrastructure of the egg of the cat flea (Siphonaptera: Pulicidae).
J Med Entomol. 1999 Mar;36(2):149-57. doi: 10.1093/jmedent/36.2.149.
7
Opisthorchis viverrini: ultrastructure of the tegument of the first-week juveniles and adult flukes.
Int J Parasitol. 1994 Aug;24(5):613-21. doi: 10.1016/0020-7519(94)90113-9.
10
Ultrastructure of the parotid gland in the little brown bat.
Anat Rec. 1984 Nov;210(3):491-502. doi: 10.1002/ar.1092100310.

引用本文的文献

1
The plate body: 3D ultrastructure of a facultative organelle of alveolar epithelial type II cells involved in SP-A trafficking.
Histochem Cell Biol. 2021 Feb;155(2):261-269. doi: 10.1007/s00418-020-01912-7. Epub 2020 Sep 2.

本文引用的文献

1
Differential Ligand Binding Specificities of the Pulmonary Collectins Are Determined by the Conformational Freedom of a Surface Loop.
Biochemistry. 2017 Aug 8;56(31):4095-4105. doi: 10.1021/acs.biochem.6b01313. Epub 2017 Jul 31.
2
Surfactant protein A: A key player in lung homeostasis.
Int J Biochem Cell Biol. 2016 Dec;81(Pt A):151-155. doi: 10.1016/j.biocel.2016.11.003. Epub 2016 Nov 9.
4
Emerging and Novel Functions of Complement Protein C1q.
Front Immunol. 2015 Jun 29;6:317. doi: 10.3389/fimmu.2015.00317. eCollection 2015.
5
The Phyre2 web portal for protein modeling, prediction and analysis.
Nat Protoc. 2015 Jun;10(6):845-58. doi: 10.1038/nprot.2015.053. Epub 2015 May 7.
6
Alteration of the langerin oligomerization state affects Birbeck granule formation.
Biophys J. 2015 Feb 3;108(3):666-77. doi: 10.1016/j.bpj.2014.10.075.
7
CDD: NCBI's conserved domain database.
Nucleic Acids Res. 2015 Jan;43(Database issue):D222-6. doi: 10.1093/nar/gku1221. Epub 2014 Nov 20.
8
Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films.
Chem Phys Lipids. 2015 Jan;185:153-75. doi: 10.1016/j.chemphyslip.2014.09.002. Epub 2014 Sep 28.
9
The molecular era of surfactant biology.
Neonatology. 2014;105(4):337-43. doi: 10.1159/000360649. Epub 2014 May 30.
10
An Insight into the Diverse Roles of Surfactant Proteins, SP-A and SP-D in Innate and Adaptive Immunity.
Front Immunol. 2012 Jun 7;3:131. doi: 10.3389/fimmu.2012.00131. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验