Suppr超能文献

压力下 PbS 的 B1-B2 相转变机制和途径。

B1-B2 phase transition mechanism and pathway of PbS under pressure.

机构信息

Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada.

出版信息

J Chem Phys. 2018 Mar 14;148(10):104503. doi: 10.1063/1.5010381.

Abstract

Experimental studies at finite Pressure-Temperature (P-T) conditions and a theoretical study at 0 K of the phase transition in lead sulphide (PbS) have been inconclusive. Many studies that have been done to understand structural transformation in PbS can broadly be classified into two main ideological streams-one with Pnma and another with Cmcm orthorhombic intermediate phase. To foster better understanding of this phenomenon, we present the result of the first-principles study of phase transition in PbS at finite temperature. We employed the particle swarm-intelligence optimization algorithm for the 0 K structure search and first-principles metadynamics simulations to study the phase transition pathway of PbS from the ambient pressure, 0 K Fm-3m structure to the high-pressure Pm-3m phase under experimentally achievable P-T conditions. Significantly, our calculation shows that both streams are achievable under specific P-T conditions. We further uncover new tetragonal and monoclinic structures of PbS with space group P2/c and I4/amd, respectively. We propose the P2/c and I4/amd as a precursor phase to the Pnma and Cmcm phases, respectively. We investigated the stability of the new structures and found them to be dynamically stable at their stability pressure range. Electronic structure calculations reveal that both P2/c and I4/amd phases are semiconducting with direct and indirect bandgap energies of 0.69(5) eV and 0.97(3) eV, respectively. In general, both P2/c and I4/amd phases were found to be energetically competitive with their respective orthorhombic successors.

摘要

在有限的压力-温度(P-T)条件下进行实验研究以及在 0 K 温度下对硫化铅(PbS)的相变进行理论研究均未得出明确的结论。为了理解 PbS 中的结构转变,已经进行了许多研究,可以将这些研究大致分为两个主要思想流派:一个采用 Pnma 结构,另一个采用 Cmcm 正交相中间相。为了更好地理解这一现象,我们呈现了在有限温度下 PbS 相变的第一性原理研究结果。我们采用粒子群智能优化算法进行 0 K 结构搜索,并使用第一性原理元动力学模拟研究了从环境压力、0 K Fm-3m 结构到实验可实现的 P-T 条件下高压 Pm-3m 相的 PbS 相变途径。重要的是,我们的计算表明,在特定的 P-T 条件下,这两个流派都是可行的。我们进一步揭示了 PbS 的新四方和单斜结构,其空间群分别为 P2/c 和 I4/amd。我们分别提出 P2/c 和 I4/amd 作为 Pnma 和 Cmcm 相的前体相。我们研究了新结构的稳定性,并发现它们在其稳定压力范围内是动力学稳定的。电子结构计算表明,P2/c 和 I4/amd 相都是半导体,具有 0.69(5) eV 和 0.97(3) eV 的直接和间接带隙能。一般来说,P2/c 和 I4/amd 相在能量上与它们各自的正交相后继相具有竞争力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验