Patrick Christopher E, Kumar Santosh, Balakrishnan Geetha, Edwards Rachel S, Lees Martin R, Petit Leon, Staunton Julie B
Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom.
Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom.
Phys Rev Lett. 2018 Mar 2;120(9):097202. doi: 10.1103/PhysRevLett.120.097202.
Magnetocrystalline anisotropy, the microscopic origin of permanent magnetism, is often explained in terms of ferromagnets. However, the best performing permanent magnets based on rare earths and transition metals (RE-TM) are in fact ferrimagnets, consisting of a number of magnetic sublattices. Here we show how a naive calculation of the magnetocrystalline anisotropy of the classic RE-TM ferrimagnet GdCo_{5} gives numbers that are too large at 0 K and exhibit the wrong temperature dependence. We solve this problem by introducing a first-principles approach to calculate temperature-dependent magnetization versus field (FPMVB) curves, mirroring the experiments actually used to determine the anisotropy. We pair our calculations with measurements on a recently grown single crystal of GdCo_{5}, and find excellent agreement. The FPMVB approach demonstrates a new level of sophistication in the use of first-principles calculations to understand RE-TM magnets.
磁晶各向异性作为永磁体的微观起源,通常是从铁磁体的角度来解释的。然而,基于稀土和过渡金属(RE-TM)的性能最佳的永磁体实际上是亚铁磁体,由多个磁亚晶格组成。在此我们展示了对经典的RE-TM亚铁磁体GdCo₅的磁晶各向异性进行简单计算时,在0 K时得出的数值过大,并且呈现出错误的温度依赖性。我们通过引入一种第一性原理方法来计算温度相关的磁化强度与磁场(FPMVB)曲线,这与实际用于确定各向异性的实验相对应,从而解决了这个问题。我们将计算结果与对最近生长的GdCo₅单晶的测量结果进行配对,发现两者吻合得很好。FPMVB方法展示了在使用第一性原理计算来理解RE-TM磁体方面达到了一个新的精细程度。