Suppr超能文献

人群遗传对人类数量性状 GWAS 研究结果的解释。

A population genetic interpretation of GWAS findings for human quantitative traits.

机构信息

Department of Biological Sciences, Columbia University, New York, New York, United States of America.

Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, United States of America.

出版信息

PLoS Biol. 2018 Mar 16;16(3):e2002985. doi: 10.1371/journal.pbio.2002985. eCollection 2018 Mar.

Abstract

Human genome-wide association studies (GWASs) are revealing the genetic architecture of anthropomorphic and biomedical traits, i.e., the frequencies and effect sizes of variants that contribute to heritable variation in a trait. To interpret these findings, we need to understand how genetic architecture is shaped by basic population genetics processes-notably, by mutation, natural selection, and genetic drift. Because many quantitative traits are subject to stabilizing selection and because genetic variation that affects one trait often affects many others, we model the genetic architecture of a focal trait that arises under stabilizing selection in a multidimensional trait space. We solve the model for the phenotypic distribution and allelic dynamics at steady state and derive robust, closed-form solutions for summary statistics of the genetic architecture. Our results provide a simple interpretation for missing heritability and why it varies among traits. They predict that the distribution of variances contributed by loci identified in GWASs is well approximated by a simple functional form that depends on a single parameter: the expected contribution to genetic variance of a strongly selected site affecting the trait. We test this prediction against the results of GWASs for height and body mass index (BMI) and find that it fits the data well, allowing us to make inferences about the degree of pleiotropy and mutational target size for these traits. Our findings help to explain why the GWAS for height explains more of the heritable variance than the similarly sized GWAS for BMI and to predict the increase in explained heritability with study sample size. Considering the demographic history of European populations, in which these GWASs were performed, we further find that most of the associations they identified likely involve mutations that arose shortly before or during the Out-of-Africa bottleneck at sites with selection coefficients around s = 10-3.

摘要

人类全基因组关联研究(GWAS)正在揭示人体形态和生物医学特征的遗传结构,即导致特征遗传变异的变异的频率和效应大小。为了解释这些发现,我们需要了解遗传结构是如何被基本的群体遗传学过程塑造的——特别是突变、自然选择和遗传漂变。由于许多数量性状受到稳定选择的影响,而且影响一个性状的遗传变异通常会影响许多其他性状,我们在多维性状空间中建立了一个稳定选择下焦点性状的遗传结构模型。我们求解了模型在稳态下的表型分布和等位基因动态,并推导出了遗传结构的总结统计量的稳健、闭式解。我们的结果为遗传缺失提供了一个简单的解释,以及为什么它在不同的性状中存在差异。它们预测,GWAS 中鉴定的基因座对遗传方差的贡献分布可以通过一个简单的函数形式很好地近似,该函数形式仅取决于一个参数:对受强烈选择影响性状的位点的遗传方差的预期贡献。我们通过对身高和体重指数(BMI)的 GWAS 结果进行检验,发现它很好地符合数据,使我们能够对这些性状的多效性程度和突变靶大小进行推断。我们的发现有助于解释为什么身高的 GWAS 比类似大小的 BMI 的 GWAS 解释了更多的遗传方差,并预测了随着研究样本量的增加遗传可解释性的增加。考虑到进行这些 GWAS 的欧洲人群的人口历史,我们还发现,它们所确定的大多数关联可能涉及在非洲以外瓶颈时期前后或在瓶颈时期发生的突变,其选择系数约为 s = 10-3。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0b3/5871013/0becd67a3b90/pbio.2002985.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验