Suppr超能文献

三相黏弹流的格子玻尔兹曼模型。

Lattice Boltzmann model for three-phase viscoelastic fluid flow.

机构信息

Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084, China.

出版信息

Phys Rev E. 2018 Feb;97(2-1):023312. doi: 10.1103/PhysRevE.97.023312.

Abstract

A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.

摘要

开发了一种格子玻尔兹曼(LB)框架,用于模拟复杂几何形状下的三相黏弹性流体流动。该模型基于一种不可混溶多相流的罗特曼-凯勒(Rothman-Keller)模型,即使在高密度比的情况下,也能确保多孔介质中每个组分的质量守恒。为了考虑黏弹性效应,将麦克斯韦本构关系正确地引入到动量方程中,通过去除正常但多余的粘性项,得到了麦克斯韦流体的修正格子玻尔兹曼演化方程。我们的模拟测试表明,这个多余的粘性项可能会导致显著的误差。在三个基准案例之后,以分散聚合物驱油为例,研究了三相黏弹性流体流动的驱替过程。结果表明,增加聚合物固有粘度或弹性模量都会提高采收率。

相似文献

1
Lattice Boltzmann model for three-phase viscoelastic fluid flow.
Phys Rev E. 2018 Feb;97(2-1):023312. doi: 10.1103/PhysRevE.97.023312.
2
Viscoelastic effects on residual oil distribution in flows through pillared microchannels.
J Colloid Interface Sci. 2018 Jan 15;510:262-271. doi: 10.1016/j.jcis.2017.09.069. Epub 2017 Sep 20.
3
Lattice Boltzmann method for viscoelastic fluids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 May;65(5 Pt 2):056704. doi: 10.1103/PhysRevE.65.056704. Epub 2002 May 3.
4
Modified phase-field-based lattice Boltzmann model for incompressible multiphase flows.
Phys Rev E. 2021 Sep;104(3-2):035305. doi: 10.1103/PhysRevE.104.035305.
5
Phase-field-based lattice Boltzmann model for immiscible incompressible N-phase flows.
Phys Rev E. 2020 Jun;101(6-1):063310. doi: 10.1103/PhysRevE.101.063310.
7
Grayscale lattice Boltzmann model for multiphase heterogeneous flow through porous media.
Phys Rev E. 2016 Jun;93(6):063301. doi: 10.1103/PhysRevE.93.063301. Epub 2016 Jun 6.
8
Lattice Boltzmann simulations of binary fluid flow through porous media.
Philos Trans A Math Phys Eng Sci. 2002 Mar 15;360(1792):535-45. doi: 10.1098/rsta.2001.0944.
10
Pore-scale investigation of viscous coupling effects for two-phase flow in porous media.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):026705. doi: 10.1103/PhysRevE.72.026705. Epub 2005 Aug 29.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验