Suppr超能文献

流行病学模型拟合与模拟的异构计算。

Heterogeneous computing for epidemiological model fitting and simulation.

机构信息

Center for Statistics, I-BioStat, Hasselt University, Agoralaan building D, Diepenbeek, 3590, Belgium.

Expertise Centre for Digital Media, Hasselt University, Wetenschapspark 2, Diepenbeek, 3590, Belgium.

出版信息

BMC Bioinformatics. 2018 Mar 16;19(1):101. doi: 10.1186/s12859-018-2108-3.

Abstract

BACKGROUND

Over the last years, substantial effort has been put into enhancing our arsenal in fighting epidemics from both technological and theoretical perspectives with scientists from different fields teaming up for rapid assessment of potentially urgent situations. This paper focusses on the computational aspects of infectious disease models and applies commonly available graphics processing units (GPUs) for the simulation of these models. However, fully utilizing the resources of both CPUs and GPUs requires a carefully balanced heterogeneous approach.

RESULTS

The contribution of this paper is twofold. First, an efficient GPU implementation for evaluating a small-scale ODE model; here, the basic S(usceptible)-I(nfected)-R(ecovered) model, is discussed. Second, an asynchronous particle swarm optimization (PSO) implementation is proposed where batches of particles are sent asynchronously from the host (CPU) to the GPU for evaluation. The ultimate goal is to infer model parameters that enable the model to correctly describe observed data. The particles of the PSO algorithm are candidate parameters of the model; finding the right one is a matter of optimizing the likelihood function which quantifies how well the model describes the observed data. By employing a heterogeneous approach, in which both CPU and GPU are kept busy with useful work, speedups of 10 to 12 times can be achieved on a moderate machine with a high-end consumer GPU as compared to a high-end system with 32 CPU cores.

CONCLUSIONS

Utilizing GPUs for parameter inference can bring considerable increases in performance using average host systems with high-end consumer GPUs. Future studies should evaluate the benefit of using newer CPU and GPU architectures as well as applying this method to more complex epidemiological scenarios.

摘要

背景

在过去的几年中,科学家们从不同的领域合作,从技术和理论角度大力加强我们对抗传染病的武器库,以快速评估潜在的紧急情况。本文专注于传染病模型的计算方面,并应用通用的图形处理单元(GPU)来模拟这些模型。然而,充分利用 CPU 和 GPU 的资源需要一种精心平衡的异构方法。

结果

本文的贡献有两点。首先,讨论了一种用于评估小规模 ODE 模型的高效 GPU 实现,这里的基本 S(易感)-I(感染)-R(恢复)模型。其次,提出了一种异步粒子群优化(PSO)实现,其中批量粒子从主机(CPU)异步发送到 GPU 进行评估。最终目标是推断出使模型能够正确描述观测数据的模型参数。PSO 算法的粒子是模型的候选参数;找到正确的参数是优化似然函数的问题,该函数量化了模型对观测数据的描述程度。通过采用异构方法,使 CPU 和 GPU 都忙于有用的工作,可以在具有高端消费级 GPU 的中等机器上实现 10 到 12 倍的加速,与具有 32 个 CPU 内核的高端系统相比。

结论

利用 GPU 进行参数推断可以在使用具有高端消费级 GPU 的普通主机系统中带来显著的性能提升。未来的研究应该评估使用较新的 CPU 和 GPU 架构的好处,并将这种方法应用于更复杂的流行病学场景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验