From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa.
§Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa.
Mol Cell Proteomics. 2018 Jul;17(7):1365-1377. doi: 10.1074/mcp.RA118.000705. Epub 2018 Mar 16.
Mycobacterial Ser/Thr kinases play a critical role in bacterial physiology and pathogenesis. Linking kinases to the substrates they phosphorylate , thereby elucidating their exact functions, is still a challenge. The aim of this work was to associate protein phosphorylation in mycobacteria with important subsequent macro cellular events by identifying the physiological substrates of PknG in BCG. The study compared the phosphoproteome dynamics during the batch growth of BCG the respective PknG knock-out mutant (ΔPknG-BCG) strains. We employed TiO phosphopeptide enrichment techniques combined with label-free quantitative phosphoproteomics workflow on LC-MS/MS. The comprehensive analysis of label-free data identified 603 phosphopeptides on 307 phosphoproteins with high confidence. Fifty-five phosphopeptides were differentially phosphorylated, of these, 23 phosphopeptides were phosphorylated in BCG wild-type only and not in the mutant. These were further validated through targeted mass spectrometry assays (PRMs). Kinase-peptide docking studies based on a published crystal structure of PknG in complex with GarA revealed that the majority of identified phosphosites presented docking scores close to that seen in previously described PknG substrates, GarA, and ribosomal protein L13. Six out of the 22 phosphoproteins had higher docking scores than GarA, consistent with the proteins identified here being true PknG substrates. Based on protein functional analysis of the PknG substrates identified, this study confirms that PknG plays an important regulatory role in mycobacterial metabolism, through phosphorylation of ATP binding proteins and enzymes in the TCA cycle. This work also reinforces PknG's regulation of protein translation and folding machinery.
分枝杆菌丝氨酸/苏氨酸激酶在细菌生理学和发病机制中起着关键作用。将激酶与它们磷酸化的底物联系起来,从而阐明它们的确切功能,仍然是一个挑战。本工作的目的是通过鉴定 BCG 中 PknG 的生理底物,将分枝杆菌中的蛋白质磷酸化与重要的后续宏观细胞事件联系起来。研究比较了 BCG 分批培养过程中磷酸蛋白质组动力学及其相应的 PknG 敲除突变体(Δ PknG-BCG)菌株。我们采用了 TiO2 磷酸肽富集技术,结合 LC-MS/MS 上的无标记定量磷酸蛋白质组学工作流程。无标记数据的综合分析确定了 307 个磷酸蛋白上的 603 个磷酸肽,置信度高。有 55 个磷酸肽发生了差异磷酸化,其中 23 个磷酸肽仅在 BCG 野生型中磷酸化,而在突变体中则没有。通过靶向质谱测定法(PRMs)进一步验证了这些磷酸肽。基于已发表的 PknG 与 GarA 复合物的晶体结构的激酶-肽对接研究表明,大多数鉴定出的磷酸化位点的对接分数接近先前描述的 PknG 底物 GarA 和核糖体蛋白 L13 的对接分数。在鉴定的 22 个磷酸蛋白中,有 6 个的对接分数高于 GarA,这与这里鉴定的蛋白质是真正的 PknG 底物一致。根据鉴定的 PknG 底物的蛋白质功能分析,本研究证实 PknG 通过磷酸化 ATP 结合蛋白和三羧酸循环中的酶,在分枝杆菌代谢中发挥重要的调节作用。这项工作还加强了 PknG 对蛋白质翻译和折叠机制的调节作用。