The Dow Chemical Company , 2200 W. Salzburg Road , Midland , Michigan 48686 , United States.
ACS Appl Mater Interfaces. 2018 Apr 25;10(16):14116-14123. doi: 10.1021/acsami.8b00723. Epub 2018 Apr 2.
In this work, a novel chlorodisilane precursor, pentachlorodisilane (PCDS, HSiCl), was investigated for the growth of silicon nitride (SiN ) via hollow cathode plasma-enhanced atomic layer deposition (PEALD). A well-defined self-limiting growth behavior was successfully demonstrated over the growth temperature range of 270-360 °C. At identical process conditions, PCDS not only demonstrated approximately >20% higher growth per cycle than that of a commercially available chlorodisilane precursor, hexachlorodisilane (SiCl), but also delivered a better or at least comparable film quality determined by characterizing the refractive index, wet etch rate, and density of the films. The composition of the SiN films grown at 360 °C using PCDS, as determined by X-ray photoelectron spectroscopy, showed low O content (∼2 at. %) and Cl content (<1 at. %; below the detection limit). Fourier transform infrared spectroscopy spectra suggested that N-H bonds were the dominant hydrogen-containing bonds in the SiN films without a significant amount of Si-H bonds originating from the precursor molecules. The possible surface reaction pathways of the PEALD SiN using PCDS on the surface terminated with amine groups (-NH and -NH-) are proposed. The PEALD SiN films grown using PCDS also exhibited a leakage current density as low as 1-2 nA/cm at 2 MV/cm and a breakdown electric field as high as ∼12 MV/cm.
在这项工作中,我们研究了一种新型的氯硅烷前体——五氯二硅烷(PCDS,HSiCl),通过空心阴极等离子体增强原子层沉积(PEALD)来生长氮化硅(SiN)。在 270-360°C 的生长温度范围内,成功地证明了良好的自限制生长行为。在相同的工艺条件下,PCDS 不仅表现出比商业上可用的氯硅烷前体六氯二硅烷(SiCl)每循环高约 20%的生长速率,而且还提供了更好或至少可比的薄膜质量,这是通过表征薄膜的折射率、湿法蚀刻速率和密度来确定的。使用 PCDS 在 360°C 下生长的 SiN 薄膜的组成,通过 X 射线光电子能谱(XPS)确定,显示出低 O 含量(约 2 原子%)和 Cl 含量(<1 原子%;低于检测限)。傅里叶变换红外光谱(FTIR)谱表明,在 SiN 薄膜中,N-H 键是主要的含氢键,而不是来自前体分子的大量 Si-H 键。提出了在氨基(-NH 和 -NH-)终止的表面上使用 PCDS 进行 PEALD SiN 的可能表面反应途径。使用 PCDS 生长的 PEALD SiN 薄膜在 2 MV/cm 时的漏电流密度低至 1-2 nA/cm,击穿电场高达约 12 MV/cm。