Novartis Institutes for Biomedical Research, 5300 Chiron Way , Emeryville , California 94608 , United States.
J Med Chem. 2018 Apr 26;61(8):3325-3349. doi: 10.1021/acs.jmedchem.7b01861. Epub 2018 Apr 13.
In the preceding manuscript [ Moreau et al. 2018 , 10.1021/acs.jmedchem.7b01691 ] we described a successful fragment-based lead discovery (FBLD) strategy for discovery of bacterial phosphopantetheine adenylyltransferase inhibitors (PPAT, CoaD). Following several rounds of optimization two promising lead compounds were identified: triazolopyrimidinone 3 and 4-azabenzimidazole 4. Here we disclose our efforts to further optimize these two leads for on-target potency and Gram-negative cellular activity. Enabled by a robust X-ray crystallography system, our structure-based inhibitor design approach delivered compounds with biochemical potencies 4-5 orders of magnitude greater than their respective fragment starting points. Additional optimization was guided by observations on bacterial permeability and physicochemical properties, which ultimately led to the identification of PPAT inhibitors with cellular activity against wild-type E. coli.
在前面的手稿中[Moreau 等人,2018,10.1021/acs.jmedchem.7b01691],我们描述了一种成功的基于片段的先导物发现(FBLD)策略,用于发现细菌磷酸泛酰巯基乙胺腺苷酰转移酶抑制剂(PPAT,CoaD)。经过几轮优化,我们确定了两种有前途的先导化合物:三唑并嘧啶酮 3 和 4-氮杂苯并咪唑 4。在这里,我们披露了我们为提高靶标效力和革兰氏阴性细胞活性而进一步优化这两种先导化合物的努力。得益于强大的 X 射线晶体学系统,我们的基于结构的抑制剂设计方法使化合物的生化效力比其各自的片段起点高 4-5 个数量级。通过对细菌通透性和物理化学性质的观察进行了进一步的优化,最终确定了具有针对野生型大肠杆菌的细胞活性的 PPAT 抑制剂。