Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, Institut National de la Santé et de la Recherche Médicale U1050, 75231 Paris Cedex 05, France; University Pierre et Marie Curie, ED, N°158, 75005 Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, 75005 Paris, France.
INRIA, 69603 Villeurbanne, France; University of Lyon, LIRIS UMR5205, 69622 Villeurbanne, France.
J Neurosci Methods. 2018 Jun 1;303:103-113. doi: 10.1016/j.jneumeth.2018.03.005. Epub 2018 Mar 15.
Intercellular communication through gap junction channels plays a key role in cellular homeostasis and in synchronizing physiological functions, a feature that is modified in number of pathological situations. In the brain, astrocytes are the cell population that expresses the highest amount of gap junction proteins, named connexins. Several techniques have been used to assess the level of gap junctional communication in astrocytes, but so far they remain very difficult to apply in adult brain tissue. Here, using specific loading of astrocytes with sulforhodamine 101, we adapted the gap-FRAP (Fluorescence Recovery After Photobleaching) to acute hippocampal slices from 9 month-old adult mice. We show that gap junctional communication monitored in astrocytes with this technique was inhibited either by pharmacological treatment with a gap junctional blocker or in mice lacking the two main astroglial connexins, while a partial inhibition was measured when only one connexin was knocked-out. We validate this approach using a mathematical model of sulforhodamine 101 diffusion in an elementary astroglial network and a quantitative analysis of the exponential fits to the fluorescence recovery curves. Consequently, we consider that the adaptation of the gap-FRAP technique to acute brain slices from adult mice provides an easy going and valuable approach that allows overpassing this age-dependent obstacle and will facilitate the investigation of gap junctional communication in adult healthy or pathological brain.
细胞间通过缝隙连接通道进行通讯在细胞内稳态和协调生理功能方面发挥着关键作用,这种功能在许多病理情况下都会发生改变。在大脑中,星形胶质细胞是表达缝隙连接蛋白(称为连接蛋白)最多的细胞群体。已经使用了多种技术来评估星形胶质细胞中缝隙连接通讯的水平,但到目前为止,这些技术在成年脑组织中仍然很难应用。在这里,我们使用特异性负载星形胶质细胞的磺基罗丹明 101,将缝隙 FRAP(光漂白后荧光恢复)技术应用于来自 9 个月大成年小鼠的急性海马切片。我们表明,用这种技术监测星形胶质细胞中的缝隙连接通讯,无论是通过药理学处理用缝隙连接阻滞剂还是在缺乏两种主要星形胶质细胞连接蛋白的小鼠中,都会被抑制,而当只有一种连接蛋白被敲除时,则会测量到部分抑制。我们使用磺基罗丹明 101 在基本星形胶质细胞网络中的扩散的数学模型和对荧光恢复曲线的指数拟合的定量分析来验证这种方法。因此,我们认为将缝隙 FRAP 技术应用于成年小鼠的急性脑切片提供了一种简单易行的有价值的方法,可以克服这种年龄依赖性障碍,并将有助于研究成年健康或病理性大脑中的缝隙连接通讯。