College of Food Science and Technology , Nanjing Agricultural University , 1 Weigang , Nanjing , Jiangsu 210095 , People's Republic of China.
Laboratory of Food and Soft Materials, Department of Health Sciences and Technology , ETH Zurich , Schmelzbergstrasse 9 , 8092 Zurich , Switzerland.
ACS Nano. 2018 Apr 24;12(4):3385-3396. doi: 10.1021/acsnano.7b08969. Epub 2018 Mar 23.
Adaptable hydrogel networks with reversible connectivity have emerged as a promising platform for biomedical applications. Synthetic copolymers and low-molecular-weight gelators (LMWG) have been shown to form reversible hydrogels through self-assembly of the molecules driven by self-complementary hydrophobic interaction and hydrogen bonding. Here, inspired by the adhesive proteins secreted by mussels, we found that simply adding natural polyphenols, such as epigallocatechin gallate (EGCG) to amyloid fibrils present in the nematic phase, successfully drives the formation of hydrogels through self-assembly of the hybrid supramolecules. The hydrogels show birefringence under polarized light, indicating that the nematic orientation is preserved in the gel phase. Gel stiffness enhances with incubation time and with an increase in molecular ratios between polyphenol and fibrils, fibril concentration, and pH. The hydrogels are shear thinning and thermostable from 25 to 90 °C without any phase transition. The integrity of the trihydroxyl groups, the gallate ester moiety in EGCG, and the hydrophobicity of the polyphenols govern the interactions with the amyloid fibrils and thus the properties of the ensuing hydrogels. The EGCG-binding amyloid fibrils, produced from lysozyme and peptidoglycans, retain the main binding functions of the enzyme, inducing bacterial agglomeration and immobilization on both Gram-positive and Gram-negative bacteria. Furthermore, the antibacterial mechanism of the lysozyme amyloid fibril hydrogels is initiated by membrane disintegration. In combination with the lack of cytotoxicity to human colonic epithelial cells demonstrated for these hybrid supramolecules, a potential role in combating multidrug-resistant bacteria in biomedical applications is suggested, such as in targeting diseases related to infection of the small intestine.
具有可适应的连接性的水凝胶网络已经成为生物医学应用的有前途的平台。已经表明,合成共聚物和低分子量凝胶剂(LMWG)可以通过分子的自组装形成可逆水凝胶,这种自组装是由分子的自互补疏水性相互作用和氢键驱动的。在这里,受贻贝类分泌的粘合蛋白的启发,我们发现,只需向存在于向列相中的淀粉样纤维中添加天然多酚,例如表没食子儿茶素没食子酸酯(EGCG),就可以通过混合超分子的自组装成功地形成水凝胶。水凝胶在偏振光下具有双折射,表明向列取向在凝胶相中得以保留。凝胶的刚度随孵育时间的增加而增强,随多酚与纤维之间的分子比、纤维浓度和 pH 值的增加而增强。水凝胶具有剪切稀化性,并且在 25 至 90°C 的温度范围内热稳定,没有任何相转变。三羟基基团、EGCG 中的没食子酸酯部分以及多酚的疏水性控制着与淀粉样纤维的相互作用,从而控制着随后形成的水凝胶的性质。从溶菌酶和肽聚糖产生的 EGCG 结合的淀粉样纤维保留了酶的主要结合功能,诱导细菌聚集并固定在革兰氏阳性菌和革兰氏阴性菌上。此外,溶菌酶淀粉样纤维水凝胶的抗菌机制是通过膜破裂引发的。结合对这些混合超分子表现出的对人结肠上皮细胞无细胞毒性的证明,提示它们在生物医学应用中具有对抗多药耐药菌的潜力,例如在针对与小肠感染相关的疾病方面。