International School for Advanced Studies (SISSA), I-34136 Trieste, Italy.
Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali (CNR-IOM), Democritos National Simulation Center, I-34136 Trieste, Italy.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3547-3550. doi: 10.1073/pnas.1801144115. Epub 2018 Mar 19.
The quantum motion of nuclei, generally ignored in the physics of sliding friction, can affect in an important manner the frictional dissipation of a light particle forced to slide in an optical lattice. The density matrix-calculated evolution of the quantum version of the basic Prandtl-Tomlinson model, describing the dragging by an external force of a point particle in a periodic potential, shows that purely classical friction predictions can be very wrong. The strongest quantum effect occurs not for weak but for strong periodic potentials, where barriers are high but energy levels in each well are discrete, and resonant Rabi or Landau-Zener tunneling to states in the nearest well can preempt classical stick-slip with nonnegligible efficiency, depending on the forcing speed. The resulting permeation of otherwise unsurmountable barriers is predicted to cause quantum lubricity, a phenomenon which we expect should be observable in the recently implemented sliding cold ion experiments.
原子核的量子运动通常在滑动摩擦物理学中被忽略,但它会以重要的方式影响被迫在光学晶格中滑动的轻粒子的摩擦耗散。描述外力拖拽周期性势中质点的基本普朗特-汤姆林森模型的量子版本的密度矩阵计算演化表明,纯粹的经典摩擦预测可能是非常错误的。最强的量子效应不是发生在弱周期性势中,而是发生在强周期性势中,其中势垒较高,但每个阱中的能级是离散的,并且在最近的阱中进行共振拉比或朗道-泽纳隧穿到状态可以以不可忽略的效率预先阻止经典的粘滑,这取决于驱动力的速度。预计这种渗透会导致量子润滑,这是一种我们期望在最近实施的滑动冷离子实验中能够观察到的现象。