Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China.
Department of Radiology, Nantong Cancer Hospital, Nantong University, Nantong, 226361, Jiangsu, China.
Abdom Radiol (NY). 2018 Nov;43(11):3132-3141. doi: 10.1007/s00261-018-1569-1.
This study aimed to investigate the diagnostic performance of quantitative DCE-MRI for characterizing ovarian tumors.
We prospectively assessed the differences of quantitative DCE-MRI parameters (K, k, and v) among 15 benign, 28 borderline, and 66 malignant ovarian tumors; and between type I (n = 28) and type II (n = 29) of epithelial ovarian carcinomas (EOCs). DCE-MRI data were analyzed using whole solid tumor volume region of interest (ROI) method, and quantitative parameters were calculated based on a modified Tofts model. The non-parametric Kruskal-Wallis test, Mann-Whitney U test, Pearson's chi-square test, intraclass correlation coefficient (ICC), variance test, and receiver operating characteristic curves (ROC) were used for statistical analysis.
The largest K and k values were observed in ovarian malignant tumors, followed by borderline and benign tumors (all P < 0.001). K was the better parameter for differentiating benign tumors from borderline and malignant tumors, with a sensitivity of 89.3% and 95.5%, a specificity of 86.7% and 100%, an accuracy of 88.4% and 96.3%, and an area under the curve (AUC) of 0.94 and 0.992, respectively, whereas K was better for differentiating borderline from malignant tumors with a sensitivity of 60.7%, a specificity of 78.8%, an accuracy of 73.4%, and an AUC of 0.743. In addition, a combination with k could further improve the sensitivity to 78.9%. The median K and k values were significantly higher in type II than in type I EOCs.
DCE-MRI with volume quantification is a technically feasible method, and can be used for the differentiation of ovarian tumors and for discriminating between type I and type II EOCs.
本研究旨在探讨定量 DCE-MRI 对卵巢肿瘤进行诊断的性能。
我们前瞻性评估了 15 例良性、28 例交界性和 66 例恶性卵巢肿瘤之间的定量 DCE-MRI 参数(K、k 和 v)的差异;并评估了 28 例Ⅰ型(n=28)和 29 例Ⅱ型(n=29)上皮性卵巢癌(EOC)之间的差异。使用全实性肿瘤体积感兴趣区(ROI)方法分析 DCE-MRI 数据,并基于改良的 Tofts 模型计算定量参数。采用非参数 Kruskal-Wallis 检验、Mann-Whitney U 检验、Pearson 卡方检验、组内相关系数(ICC)、方差检验和受试者工作特征曲线(ROC)进行统计学分析。
卵巢恶性肿瘤的 K 和 k 值最大,其次是交界性和良性肿瘤(均 P<0.001)。K 是鉴别良性肿瘤与交界性和恶性肿瘤的最佳参数,其敏感性为 89.3%和 95.5%,特异性为 86.7%和 100%,准确性为 88.4%和 96.3%,曲线下面积(AUC)为 0.94 和 0.992。此外,联合 k 值可以进一步提高敏感性至 78.9%。Ⅱ型 EOC 的 K 和 k 值中位数明显高于Ⅰ型。
体积定量的 DCE-MRI 是一种可行的技术方法,可用于卵巢肿瘤的鉴别诊断,以及区分Ⅰ型和Ⅱ型 EOC。