Suppr超能文献

定量动态对比增强磁共振成像在鉴别卵巢良、交界性和恶性肿瘤中的应用。

Quantitative dynamic contrast-enhanced MR imaging for differentiating benign, borderline, and malignant ovarian tumors.

机构信息

Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, China.

Department of Radiology, Nantong Cancer Hospital, Nantong University, Nantong, 226361, Jiangsu, China.

出版信息

Abdom Radiol (NY). 2018 Nov;43(11):3132-3141. doi: 10.1007/s00261-018-1569-1.

Abstract

PURPOSE

This study aimed to investigate the diagnostic performance of quantitative DCE-MRI for characterizing ovarian tumors.

METHODS

We prospectively assessed the differences of quantitative DCE-MRI parameters (K, k, and v) among 15 benign, 28 borderline, and 66 malignant ovarian tumors; and between type I (n = 28) and type II (n = 29) of epithelial ovarian carcinomas (EOCs). DCE-MRI data were analyzed using whole solid tumor volume region of interest (ROI) method, and quantitative parameters were calculated based on a modified Tofts model. The non-parametric Kruskal-Wallis test, Mann-Whitney U test, Pearson's chi-square test, intraclass correlation coefficient (ICC), variance test, and receiver operating characteristic curves (ROC) were used for statistical analysis.

RESULTS

The largest K and k values were observed in ovarian malignant tumors, followed by borderline and benign tumors (all P < 0.001). K was the better parameter for differentiating benign tumors from borderline and malignant tumors, with a sensitivity of 89.3% and 95.5%, a specificity of 86.7% and 100%, an accuracy of 88.4% and 96.3%, and an area under the curve (AUC) of 0.94 and 0.992, respectively, whereas K was better for differentiating borderline from malignant tumors with a sensitivity of 60.7%, a specificity of 78.8%, an accuracy of 73.4%, and an AUC of 0.743. In addition, a combination with k could further improve the sensitivity to 78.9%. The median K and k values were significantly higher in type II than in type I EOCs.

CONCLUSION

DCE-MRI with volume quantification is a technically feasible method, and can be used for the differentiation of ovarian tumors and for discriminating between type I and type II EOCs.

摘要

目的

本研究旨在探讨定量 DCE-MRI 对卵巢肿瘤进行诊断的性能。

方法

我们前瞻性评估了 15 例良性、28 例交界性和 66 例恶性卵巢肿瘤之间的定量 DCE-MRI 参数(K、k 和 v)的差异;并评估了 28 例Ⅰ型(n=28)和 29 例Ⅱ型(n=29)上皮性卵巢癌(EOC)之间的差异。使用全实性肿瘤体积感兴趣区(ROI)方法分析 DCE-MRI 数据,并基于改良的 Tofts 模型计算定量参数。采用非参数 Kruskal-Wallis 检验、Mann-Whitney U 检验、Pearson 卡方检验、组内相关系数(ICC)、方差检验和受试者工作特征曲线(ROC)进行统计学分析。

结果

卵巢恶性肿瘤的 K 和 k 值最大,其次是交界性和良性肿瘤(均 P<0.001)。K 是鉴别良性肿瘤与交界性和恶性肿瘤的最佳参数,其敏感性为 89.3%和 95.5%,特异性为 86.7%和 100%,准确性为 88.4%和 96.3%,曲线下面积(AUC)为 0.94 和 0.992。此外,联合 k 值可以进一步提高敏感性至 78.9%。Ⅱ型 EOC 的 K 和 k 值中位数明显高于Ⅰ型。

结论

体积定量的 DCE-MRI 是一种可行的技术方法,可用于卵巢肿瘤的鉴别诊断,以及区分Ⅰ型和Ⅱ型 EOC。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验