Sharma Rajesh O, Saini L K, Bahuguna Bhagwati Prasad
Applied Physics Department, Sardar Vallabhbhai National Institute of Technology Surat-395007, Gujarat, India.
J Phys Condens Matter. 2018 May 10;30(18):185404. doi: 10.1088/1361-648X/aab81c. Epub 2018 Mar 20.
We study the phase diagram of a symmetric electron-hole bilayer system at absolute zero temperature and in zero magnetic field within the quantum Monte Carlo approach. In particular, we conduct variational Monte Carlo simulations for various phases, i.e. the paramagnetic fluid phase, the ferromagnetic fluid phase, the anti-ferromagnetic Wigner crystal phase, the ferromagnetic Wigner crystal phase and the excitonic phase, to estimate the ground-state energy at different values of in-layer density and inter-layer spacing. Slater-Jastrow style trial wave functions, with single-particle orbitals appropriate for different phases, are used to construct the phase diagram in the (r , d) plane by finding the relative stability of trial wave functions. At very small layer separations, we find that the fluid phases are stable, with the paramagnetic fluid phase being particularly stable at [Formula: see text] and the ferromagnetic fluid phase being particularly stable at [Formula: see text]. As the layer spacing increases, we first find that there is a phase transition from the ferromagnetic fluid phase to the ferromagnetic Wigner crystal phase when d reaches 0.4 a.u. at r = 20, and before there is a return to the ferromagnetic fluid phase when d approaches 1 a.u. However, for r < 20 and [Formula: see text] a.u., the excitonic phase is found to be stable. We do not find that the anti-ferromagnetic Wigner crystal is stable over the considered range of r and d. We also find that as r increases, the critical layer separations for Wigner crystallization increase.
我们在绝对零度和零磁场条件下,采用量子蒙特卡罗方法研究对称电子 - 空穴双层系统的相图。具体而言,我们针对各种相进行变分蒙特卡罗模拟,即顺磁流体相、铁磁流体相、反铁磁维格纳晶体相、铁磁维格纳晶体相和激子相,以估计不同层内密度和层间距值下的基态能量。使用具有适合不同相的单粒子轨道的斯莱特 - 贾斯特罗型试探波函数,通过确定试探波函数的相对稳定性,在(r ,d)平面构建相图。在非常小的层间距下,我们发现流体相是稳定的,其中顺磁流体相在[公式:见正文]时特别稳定,铁磁流体相在[公式:见正文]时特别稳定。随着层间距增加,我们首先发现当r = 20时d达到0.4 a.u.时,存在从铁磁流体相到铁磁维格纳晶体相的相变,并且在d接近1 a.u.之前会回到铁磁流体相。然而,对于r < 20且[公式:见正文] a.u.,发现激子相是稳定的。在我们考虑的r 和d范围内,未发现反铁磁维格纳晶体是稳定的。我们还发现随着r 增加,维格纳结晶的临界层间距增大。