Suppr超能文献

决策树分析在缺氧缺血性脑损伤结局分类中的探索性应用

Exploratory Use of Decision Tree Analysis in Classification of Outcome in Hypoxic-Ischemic Brain Injury.

作者信息

Phan Thanh G, Chen Jian, Singhal Shaloo, Ma Henry, Clissold Benjamin B, Ly John, Beare Richard

机构信息

Stroke and Aging Research Group, School of Clinical Sciences, Department of Medicine, Monash University and Stroke Unit, Monash Medical Centre, Melbourne, VIC, Australia.

Murdoch Children's Research Institute, Melbourne, VIC, Australia.

出版信息

Front Neurol. 2018 Mar 6;9:126. doi: 10.3389/fneur.2018.00126. eCollection 2018.

Abstract

BACKGROUND

Prognostication following hypoxic ischemic encephalopathy (brain injury) is important for clinical management. The aim of this exploratory study is to use a decision tree model to find clinical and MRI associates of severe disability and death in this condition. We evaluate clinical model and then the added value of MRI data.

METHOD

The inclusion criteria were as follows: age ≥17 years, cardio-respiratory arrest, and coma on admission (2003-2011). Decision tree analysis was used to find clinical [Glasgow Coma Score (GCS), features about cardiac arrest, therapeutic hypothermia, age, and sex] and MRI (infarct volume) associates of severe disability and death. We used the area under the ROC (auROC) to determine accuracy of model. There were 41 (63.7% males) patients having MRI imaging with the average age 51.5 ± 18.9 years old. The decision trees showed that infarct volume and age were important factors for discrimination between mild to moderate disability and severe disability and death at day 0 and day 2. The auROC for this model was 0.94 (95% CI 0.82-1.00). At day 7, GCS value was the only predictor; the auROC was 0.96 (95% CI 0.86-1.00).

CONCLUSION

Our findings provide proof of concept for further exploration of the role of MR imaging and decision tree analysis in the early prognostication of hypoxic ischemic brain injury.

摘要

背景

缺氧缺血性脑病(脑损伤)后的预后评估对临床管理很重要。本探索性研究的目的是使用决策树模型来找出这种情况下严重残疾和死亡的临床及磁共振成像(MRI)相关因素。我们先评估临床模型,然后评估MRI数据的附加价值。

方法

纳入标准如下:年龄≥17岁、心搏呼吸骤停且入院时昏迷(2003 - 2011年)。采用决策树分析来找出严重残疾和死亡的临床相关因素[格拉斯哥昏迷评分(GCS)、心脏骤停特征、治疗性低温、年龄和性别]以及MRI相关因素(梗死体积)。我们使用ROC曲线下面积(auROC)来确定模型的准确性。有41例患者(63.7%为男性)进行了MRI成像,平均年龄为51.5±18.9岁。决策树显示,梗死体积和年龄是在第0天和第2天区分轻度至中度残疾与严重残疾和死亡的重要因素。该模型的auROC为0.94(95%CI 0.82 - 1.00)。在第7天,GCS值是唯一的预测指标;auROC为0.96(95%CI 0.86 - 1.00)。

结论

我们的研究结果为进一步探索MRI成像和决策树分析在缺氧缺血性脑损伤早期预后评估中的作用提供了概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b5/5845712/49ee53a718e2/fneur-09-00126-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验