Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.
Fetal Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
J Alzheimers Dis. 2018;65(3):807-817. doi: 10.3233/JAD-170338.
BACKGROUND: Alzheimer's disease (AD) and mild cognitive impairment (MCI) are age-related neurodegenerative diseases characterized by progressive loss of memory and irreversible cognitive functions. The hippocampus, a brain area critical for learning and memory processes, is especially susceptible to damage at early stages of AD. OBJECTIVE: We aimed to develop prediction model using a multi-modality sparse representation approach. METHODS: We proposed a sparse representation approach to the hippocampus using structural T1-weighted magnetic resonance imaging (MRI) and 18-fluorodeoxyglucose-positron emission tomography (FDG-PET) to distinguish AD/MCI from healthy control subjects (HCs). We considered structural and function information for the hippocampus and applied a sparse patch-based approach to effectively reduce the dimensions of neuroimaging biomarkers. RESULTS: In experiments using Alzheimer's Disease Neuroimaging Initiative data, our proposed method demonstrated more reliable than previous classification studies. The effects of different parameters on segmentation accuracy were also evaluated. The mean classification accuracy obtained with our proposed method was 0.94 for AD/HCs, 0.82 for MCI/HCs, and 0.86 for AD/MCI. CONCLUSION: We extracted multi-modal features from automatically defined hippocampal regions of training subjects and found this method to be discriminative and robust for AD and MCI classification. The extraction of features in T1 and FDG-PET images is expected to improve classification performance due to the relationship between brain structure and function.
背景:阿尔茨海默病(AD)和轻度认知障碍(MCI)是与年龄相关的神经退行性疾病,其特征是记忆逐渐丧失和认知功能不可逆转。海马体是学习和记忆过程的关键大脑区域,在 AD 的早期阶段特别容易受到损伤。
目的:我们旨在使用多模态稀疏表示方法开发预测模型。
方法:我们提出了一种使用结构 T1 加权磁共振成像(MRI)和 18-氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)的海马体稀疏表示方法,以区分 AD/MCI 与健康对照组(HCs)。我们考虑了海马体的结构和功能信息,并应用稀疏补丁方法来有效降低神经影像学生物标志物的维度。
结果:在使用阿尔茨海默病神经影像学倡议数据的实验中,我们提出的方法比以前的分类研究更可靠。还评估了不同参数对分割准确性的影响。我们提出的方法获得的平均分类准确性为 AD/HCs 为 0.94,MCI/HCs 为 0.82,AD/MCI 为 0.86。
结论:我们从自动定义的训练对象的海马体区域中提取了多模态特征,发现该方法对 AD 和 MCI 分类具有判别力和稳健性。由于大脑结构和功能之间的关系,预计在 T1 和 FDG-PET 图像中提取特征会提高分类性能。
J Alzheimers Dis. 2018
Comput Methods Programs Biomed. 2015-8-10
Curr Alzheimer Res. 2018
J Neurosci Methods. 2015-12-30
J Alzheimers Dis. 2016-8-10
Brain Imaging Behav. 2016-9