Suppr超能文献

择期骨科手术后基于网络和移动平台的结果收集门户的患者采用与使用情况。

Patient Adoption and Utilization of a Web-Based and Mobile-Based Portal for Collecting Outcomes After Elective Orthopedic Surgery.

作者信息

Bell Kerri, Warnick Eugene, Nicholson Kristen, Ulcoq Sarah, Kim Seong Jin, Schroeder Gregory D, Vaccaro Alexander

机构信息

1 The Rothman Institute, Thomas Jefferson University, Philadelphia, PA.

2 Force Therapeutics, New York, NY.

出版信息

Am J Med Qual. 2018 Nov/Dec;33(6):649-656. doi: 10.1177/1062860618765083. Epub 2018 Mar 21.

Abstract

Health care increasingly collects patient-reported outcomes (PROs) via web-based platforms. The purpose of this study was to evaluate how patient age influences portal engagement. Patients undergoing elective surgery at a single multispecialty orthopedic practice from September 2014 to February 2017 had access to an online portal to complete PROs, message the clinic, and view physical therapy instructions. A mobile app was optionally available. Age, sex, log-in frequency, PRO completion rates, and number of messages sent were reviewed retrospectively. Message frequency, log-in rates, and PRO compliance were highest for patients aged 41 to 50, 51 to 60, and 61 to 70, respectively. Mobile app use decreased with age ( P = .002); yet, at all ages, the mobile app group was more engaged. In particular, for patients aged 18 to 30 years, log-in frequency increased 2.5-fold and PRO compliance improved 44% ( P < .001) in the mobile app group. This study demonstrates that portal interaction varies by age and that data capture is highest in patients who choose the mobile app.

摘要

医疗保健机构越来越多地通过基于网络的平台收集患者报告的结局(PROs)。本研究的目的是评估患者年龄如何影响门户网站的参与度。2014年9月至2017年2月期间,在一家单一的多专科骨科诊所接受择期手术的患者可以使用在线门户网站来完成PROs、向诊所发送信息以及查看物理治疗说明。还可选择使用移动应用程序。对年龄、性别、登录频率、PRO完成率和发送的信息数量进行了回顾性审查。41至50岁、51至60岁和61至70岁的患者信息频率、登录率和PRO依从性分别最高。移动应用程序的使用随年龄增长而减少(P = .002);然而,在所有年龄段中,使用移动应用程序的患者群体参与度更高。特别是,对于18至30岁的患者,移动应用程序组的登录频率增加了2.5倍,PRO依从性提高了44%(P < .001)。本研究表明,门户网站的互动因年龄而异,并且在选择移动应用程序的患者中数据收集量最高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验