Max-Planck-Institut für Entwicklungsbiologie, Abt. Proteinevolution, Max-Planck-Ring 5, 72076 Tübingen, Germany.
Pharmazeutisches Institut der Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.
Cell Signal. 2018 Jun;46:135-144. doi: 10.1016/j.cellsig.2018.03.002. Epub 2018 Mar 18.
Class III adenylate cyclases (ACs) are widespread signaling proteins, which translate diverse intracellular and extracellular stimuli into a uniform intracellular signal. They are typically composed of an N-terminal array of input domains and transducers, followed C-terminally by a catalytic domain, which, as a dimer, generates the second messenger cAMP. The input domains, which receive stimuli, and the transducers, which propagate the signals, are often found in other signaling proteins. The nature of stimuli and the regulatory mechanisms of ACs have been studied experimentally in only a few cases, and even in these, important questions remain open, such as whether eukaryotic ACs regulated by G protein-coupled receptors can also receive stimuli through their own membrane domains. Here we survey the current knowledge on regulation and intramolecular signal propagation in ACs and draw comparisons to other signaling proteins. We highlight the pivotal role of a recently identified cyclase-specific transducer element located N-terminally of many AC catalytic domains, suggesting an intramolecular signaling capacity.
III 类腺苷酸环化酶(AC)是广泛存在的信号蛋白,可将各种细胞内和细胞外刺激转化为统一的细胞内信号。它们通常由 N 端输入结构域和转导器组成,然后 C 端是催化结构域,作为二聚体产生第二信使 cAMP。接收刺激的输入结构域和传播信号的转导器通常存在于其他信号蛋白中。仅在少数情况下对 AC 的刺激性质和调节机制进行了实验研究,即使在这些情况下,仍存在一些悬而未决的重要问题,例如,受 G 蛋白偶联受体调节的真核 AC 是否也可以通过自身的膜结构域接收刺激。在这里,我们综述了目前关于 AC 调节和分子内信号转导的知识,并与其他信号蛋白进行了比较。我们强调了最近发现的位于许多 AC 催化结构域 N 端的环化酶特异性转导元件的关键作用,这表明存在分子内信号转导能力。