Suppr超能文献

通过快速调制分层介质实现宽带声学亚波长成像。

Broadband acoustic subwavelength imaging by rapidly modulated stratified media.

作者信息

Zhu Xing-Feng, Wei Qi, Wu Da-Jian, Liu Xiao-Jun

机构信息

Key Laboratory of Modern Acoustics, Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.

Jiangsu Key Lab on Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023, China.

出版信息

Sci Rep. 2018 Mar 21;8(1):4934. doi: 10.1038/s41598-018-23411-5.

Abstract

An acoustic anisotropic lens (AAL) based on large mass-density modulation depth (LMMD) medium is proposed for subwavelength imaging. The underlying mechanism for converting evanescent components into propagating waves is attributed to the strong suppression of the transverse velocity field component in LMMD medium. In addition, the proposed lens can operate in a broadband manner, which is more flexible in practical applications. Both transfer matrix method and finite element method are used to corroborate the subwavelength imaging capabilities of the proposed lens. The numerical simulations demonstrate that the proposed lens can clearly distinguish two Gaussian sources with equal width of λ/25 and separation of λ/5 in a broad frequency bandwidth. Medium losses decrease the transmission but cannot compromise the resolution of the lens.

摘要

提出了一种基于大质量密度调制深度(LMMD)介质的声学各向异性透镜(AAL)用于亚波长成像。将倏逝分量转换为传播波的潜在机制归因于LMMD介质中横向速度场分量的强烈抑制。此外,所提出的透镜可以以宽带方式工作,这在实际应用中更加灵活。采用传输矩阵法和有限元法来证实所提出透镜的亚波长成像能力。数值模拟表明,所提出的透镜在很宽频率带宽内能够清晰区分宽度为λ/25且间距为λ/5的两个高斯源。介质损耗会降低透射率,但不会影响透镜的分辨率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/746d/5862972/0a3b7eb5a133/41598_2018_23411_Fig1_HTML.jpg

相似文献

1
Broadband acoustic subwavelength imaging by rapidly modulated stratified media.
Sci Rep. 2018 Mar 21;8(1):4934. doi: 10.1038/s41598-018-23411-5.
2
Non-diffraction propagation of acoustic waves in a rapidly modulated stratified medium.
Sci Rep. 2017 Aug 15;7(1):8184. doi: 10.1038/s41598-017-08750-z.
5
Terahertz super-resolution imaging using four-wave mixing in graphene.
Opt Lett. 2018 May 1;43(9):2102-2105. doi: 10.1364/OL.43.002102.
6
Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials.
J Acoust Soc Am. 2012 Oct;132(4):2800-6. doi: 10.1121/1.4744932.
7
Experimental demonstration of an acoustic magnifying hyperlens.
Nat Mater. 2009 Dec;8(12):931-4. doi: 10.1038/nmat2561. Epub 2009 Oct 25.
8
Broadband subwavelength imaging using a tunable graphene-lens.
ACS Nano. 2012 Nov 27;6(11):10107-14. doi: 10.1021/nn303845a. Epub 2012 Oct 19.
9
Sound focusing by a broadband acoustic Luneburg lens.
J Acoust Soc Am. 2022 Mar;151(3):2238. doi: 10.1121/10.0009909.

本文引用的文献

1
Sub-wavelength focusing of acoustic waves in bubbly media.
Proc Math Phys Eng Sci. 2017 Dec;473(2208):20170469. doi: 10.1098/rspa.2017.0469. Epub 2017 Dec 20.
2
Non-diffraction propagation of acoustic waves in a rapidly modulated stratified medium.
Sci Rep. 2017 Aug 15;7(1):8184. doi: 10.1038/s41598-017-08750-z.
4
Effective medium theory for Kapitza stratified media: diffractionless propagation.
Phys Rev Lett. 2013 Apr 5;110(14):143901. doi: 10.1103/PhysRevLett.110.143901. Epub 2013 Apr 3.
5
Kapitza homogenization of deep gratings for designing dielectric metamaterials.
Opt Lett. 2013 Sep 15;38(18):3658-60. doi: 10.1364/OL.38.003658.
6
Anisotropic metamaterials for full control of acoustic waves.
Phys Rev Lett. 2012 Mar 23;108(12):124301. doi: 10.1103/PhysRevLett.108.124301.
7
Amplification of acoustic evanescent waves using metamaterial slabs.
Phys Rev Lett. 2011 Nov 4;107(19):194301. doi: 10.1103/PhysRevLett.107.194301. Epub 2011 Nov 1.
8
Composite acoustic medium with simultaneously negative density and modulus.
Phys Rev Lett. 2010 Feb 5;104(5):054301. doi: 10.1103/PhysRevLett.104.054301.
9
Experimental demonstration of an acoustic magnifying hyperlens.
Nat Mater. 2009 Dec;8(12):931-4. doi: 10.1038/nmat2561. Epub 2009 Oct 25.
10
Focusing ultrasound with an acoustic metamaterial network.
Phys Rev Lett. 2009 May 15;102(19):194301. doi: 10.1103/PhysRevLett.102.194301.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验