Fegaras Eleni, Forer Arthur
Department of Biology, York University, 4700 Keele St, Toronto, ON, M3J 1P3, Canada.
Protoplasma. 2018 Sep;255(5):1401-1411. doi: 10.1007/s00709-018-1239-8. Epub 2018 Mar 21.
A "precocious" cleavage furrow develops and ingresses during early prometaphase in Mesostoma ehrenbergii spermatocytes (Forer and Pickett-Heaps Eur J Cell Biol 89:607-618, 2010). In response to chromosome movements which regularly occur during prometaphase and that alter the balance of chromosomes in the two half-spindles, the precocious furrow shifts its position along the cell, moving 2-3 μm towards the half cell with fewer chromosomes (Ferraro-Gideon et al. Cell Biol Int 37:892-898, 2013). This process continues until proper segregation is achieved and the cell enters anaphase with the cleavage furrow again in the middle of the cell. At anaphase, the furrow recommences ingression. Spindle microtubules (MTs) are implicated in various furrow positioning models, and our experiments studied the responses of the precocious furrows to the absence of spindle MTs. We depolymerized spindle MTs during prometaphase using various concentrations of nocodazole (NOC) and colcemid. The expected result is that the furrow should regress and chromosomes remain in the midzone of the cell (Cassimeris et al. J Cell Sci 96:9-15, 1990). Instead, the furrows commenced ingression and all three bivalent chromosomes moved to one pole while the univalent chromosomes, that usually reside at the two poles, either remained at their poles or moved to the opposite pole along with the bivalents, as described elsewhere (Fegaras and Forer 2018). The microtubules were completely depolymerized by the drugs, as indicated by immunofluorescence staining of treated cells (Fegaras and Forer 2018), and in the absence of microtubules, the furrows often ingressed (in 33/61 cells) at a rate similar to normal anaphase ingression (~ 1 μm/min), while often simultaneously moving toward one pole. Thus, these results indicate that in the absence of anaphase and of spindle microtubules, cleavage furrows resume ingression.
在埃氏中口线虫精母细胞的早前中期,一条“早熟”的分裂沟形成并向内凹陷(福勒和皮克特 - 希普斯,《欧洲细胞生物学杂志》89:607 - 618,2010年)。在早前中期染色体常规移动并改变两个半纺锤体中染色体平衡的情况下,早熟分裂沟会沿着细胞移动其位置,朝着染色体较少的半细胞移动2 - 3微米(费拉罗 - 吉迪恩等人,《细胞生物学国际》37:892 - 898,2013年)。这个过程会持续进行,直到实现正确的染色体分离,细胞进入后期,此时分裂沟再次位于细胞中央。在后期,分裂沟重新开始向内凹陷。纺锤体微管(MTs)参与了多种分裂沟定位模型,我们的实验研究了早熟分裂沟对纺锤体微管缺失的反应。我们在早前中期使用不同浓度的诺考达唑(NOC)和秋水仙酰胺使纺锤体微管解聚。预期结果是分裂沟应该退缩,染色体留在细胞的中区(卡西梅里斯等人,《细胞科学杂志》96:9 - 15,1990年)。然而,分裂沟开始向内凹陷,所有三条二价染色体都移向一极,而通常位于两极的单价染色体,要么留在其极位,要么与二价染色体一起移向相反的极,如其他地方所描述的(费加拉斯和福勒,2018年)。经处理细胞的免疫荧光染色表明,微管已被药物完全解聚(费加拉斯和福勒,2018年),并且在没有微管的情况下,分裂沟常常(在61个细胞中的33个)以与正常后期凹陷速率(约1微米/分钟)相似的速度向内凹陷,同时常常朝着一极移动。因此,这些结果表明,在没有后期和纺锤体微管的情况下,分裂沟会恢复向内凹陷。