From the Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
From the Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
J Biol Chem. 2018 May 4;293(18):6721-6735. doi: 10.1074/jbc.RA118.002025. Epub 2018 Mar 22.
The pH of the endolysosomal system is tightly regulated by a balance of proton pump and leak mechanisms that are critical for storage, recycling, turnover, and signaling functions in the cell. Dysregulation of endolysosomal pH has been linked to aging, amyloidogenesis, synaptic dysfunction, and various neurodegenerative disorders, including Alzheimer's disease. Therefore, understanding the mechanisms that regulate luminal pH may be key to identifying new targets for managing these disorders. Meta-analysis of yeast microarray databases revealed that nutrient-limiting conditions inhibited the histone deacetylase (HDAC) Rpd3 and thereby up-regulated transcription of the endosomal Na/H exchanger Nhx1, resulting in vacuolar alkalinization. Consistent with these findings, Rpd3 inhibition by the HDAC inhibitor and antifungal drug trichostatin A induced Nhx1 expression and vacuolar alkalinization. Bioinformatics analysis of and mouse databases revealed that caloric control of the Nhx1 orthologs DmNHE3 and NHE6, respectively, is also mediated by HDACs. We show that NHE6 is a target of the transcription factor cAMP-response element-binding protein (CREB), a known regulator of cellular responses to low-nutrient conditions, providing a molecular mechanism for nutrient- and HDAC-dependent regulation of endosomal pH. Of note, pharmacological targeting of the CREB pathway to increase NHE6 expression helped regulate endosomal pH and correct defective clearance of amyloid Aβ in an apoE4 astrocyte model of Alzheimer's disease. These observations from yeast, fly, mouse, and cell culture models point to an evolutionarily conserved mechanism for HDAC-mediated regulation of endosomal NHE expression. Our insights offer new therapeutic strategies for modulation of endolysosomal pH in fungal infection and human disease.
内溶酶体系统的 pH 值受到质子泵和泄漏机制的平衡的严格调节,这些机制对于细胞中的储存、回收、周转和信号转导功能至关重要。内溶酶体 pH 值的失调与衰老、淀粉样变性、突触功能障碍和各种神经退行性疾病有关,包括阿尔茨海默病。因此,了解调节腔室 pH 值的机制可能是确定管理这些疾病的新靶点的关键。酵母微阵列数据库的荟萃分析显示,营养限制条件抑制了组蛋白去乙酰化酶(HDAC)Rpd3,从而上调了内体 Na+/H+交换器 Nhx1 的转录,导致液泡碱化。这些发现与 Rpd3 抑制一致通过 HDAC 抑制剂和抗真菌药物曲古抑菌素 A 诱导 Nhx1 表达和液泡碱化。和小鼠数据库的生物信息学分析显示,Nhx1 同源物 DmNHE3 和 NHE6 的 caloric 控制也分别由 HDACs 介导。我们表明,NHE6 是转录因子 cAMP 反应元件结合蛋白(CREB)的靶标,CREB 是细胞对低营养条件反应的已知调节剂,为营养和 HDAC 依赖性调节内体 pH 值提供了分子机制。值得注意的是,靶向 CREB 途径以增加 NHE6 表达的药理学方法有助于调节内体 pH 值,并纠正载脂蛋白 E4 星形胶质细胞模型中阿尔茨海默病的淀粉样 Aβ 清除缺陷。来自酵母、果蝇、小鼠和细胞培养模型的这些观察结果表明,存在一种进化上保守的机制,用于 HDAC 介导的内体 NHE 表达调节。我们的见解为真菌感染和人类疾病中内溶酶体 pH 值的调节提供了新的治疗策略。