Division of Endocrinology, Metabolism & Molecular Medicine, Charles R. Drew University of Medicine & Sciences, David Geffen School of Medicine, University of California, 1731 E. 120th St, Los Angeles, CA, 90059, USA.
Department of Endocrinology & Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai, People's Republic of China.
Int J Obes (Lond). 2018 Dec;42(12):1999-2011. doi: 10.1038/s41366-018-0041-1. Epub 2018 Feb 22.
Visceral fat accumulation increases the risk of developing type 2 diabetes and metabolic syndrome, and is associated with excessive glucocorticoids (GCs). Fat depot-specific GC action is tightly controlled by 11ß-hydroxysteroid dehydrogenase (11ß-HSD1) coupled with the enzyme hexose-6-phosphate dehydrogenase (H6PDH). Mice with inactivation or activation of H6PDH genes show altered adipose 11ß-HSD1 activity and lipid storage. We hypothesized that adipose tissue H6PDH activation is a leading cause for the visceral obesity and insulin resistance. Here, we explored the role and possible mechanism of enhancing adipose H6PDH in the development of visceral adiposity in vivo.
We investigated the potential contribution of adipose H6PDH activation to the accumulation of visceral fat by characterization of visceral fat obese gene expression profiles, fat distribution, adipocyte metabolic molecules, and abdominal fat-specific GC signaling mechanisms underlying the diet-induced visceral obesity and insulin resistance in H6PDH transgenic mice fed a standard of high-fat diet (HFD).
Transgenic H6PDH mice display increased abdominal fat accumulation, which is paralleled by elevated lipid synthesis associated with induction of lipogenic transcriptor C/EBPα and PPARγ mRNA levels within adipose tissue. Transgenic H6PDH mice fed a high-fat diet (HFD) gained more abdominal visceral fat mass coupled with activation of GSK3β and induction of XBP1/IRE1α, but reduced pThr Akt/PKB content and browning gene CD137 and GLUT4 mRNA levels within the visceral adipose tissue than WT controls. HFD-fed H6PDH transgenic mice also had impaired insulin sensitivity and exhibited elevated levels of intra-adipose GCs with induction of adipose 11ß-HSD1.
These data provide the first in vivo mechanistic evidence for the adverse metabolic effects of adipose H6PDH activation on visceral fat distribution, fat metabolism, and adipocyte function through enhancing 11ß-HSD1-driven intra-adipose GC action.
内脏脂肪堆积会增加患 2 型糖尿病和代谢综合征的风险,并且与过多的糖皮质激素(GCs)有关。脂肪库特异性 GC 作用受 11β-羟类固醇脱氢酶(11β-HSD1)与己糖-6-磷酸脱氢酶(H6PDH)偶联紧密控制。H6PDH 基因失活或激活的小鼠表现出改变的脂肪 11β-HSD1 活性和脂质储存。我们假设脂肪组织 H6PDH 的激活是导致内脏肥胖和胰岛素抵抗的主要原因。在这里,我们探索了增强脂肪组织 H6PDH 在体内内脏脂肪堆积发展中的作用和可能的机制。
我们通过研究内脏脂肪肥胖基因表达谱、脂肪分布、脂肪细胞代谢分子以及饮食诱导的内脏肥胖和胰岛素抵抗的腹部脂肪特异性 GC 信号机制,来研究脂肪组织 H6PDH 激活对内脏脂肪堆积的潜在贡献。H6PDH 转基因小鼠在高脂饮食(HFD)喂养下。
转基因 H6PDH 小鼠表现出腹部脂肪堆积增加,这与脂肪组织中脂生成转录因子 C/EBPα 和 PPARγ mRNA 水平的升高相关联。H6PDH 转基因小鼠在高脂饮食(HFD)喂养下,腹部内脏脂肪质量增加,同时激活 GSK3β 并诱导 XBP1/IRE1α,但降低了 WT 对照中的 pThr Akt/PKB 含量和褐色基因 CD137 和 GLUT4 mRNA 水平。HFD 喂养的 H6PDH 转基因小鼠也表现出胰岛素敏感性受损,并表现出脂肪内 GCs 水平升高,同时诱导脂肪 11β-HSD1。
这些数据提供了体内第一个关于脂肪组织 H6PDH 激活对内脏脂肪分布、脂肪代谢和脂肪细胞功能的不良代谢影响的机制证据,通过增强 11β-HSD1 驱动的脂肪内 GC 作用。