IEEE Trans Biomed Circuits Syst. 2018 Apr;12(2):379-389. doi: 10.1109/TBCAS.2017.2786306.
The analysis and simulation of complex interacting biochemical reaction pathways in cells is important in all of systems biology and medicine. Yet, the dynamics of even a modest number of noisy or stochastic coupled biochemical reactions is extremely time consuming to simulate. In large part, this is because of the expensive cost of random number and Poisson process generation and the presence of stiff, coupled, nonlinear differential equations. Here, we demonstrate that we can amplify inherent thermal noise in chips to emulate randomness physically, thus alleviating these costs significantly. Concurrently, molecular flux in thermodynamic biochemical reactions maps to thermodynamic electronic current in a transistor such that stiff nonlinear biochemical differential equations are emulated exactly in compact, digitally programmable, highly parallel analog "cytomorphic" transistor circuits. For even small-scale systems involving just 80 stochastic reactions, our 0.35-μm BiCMOS chips yield a 311× speedup in the simulation time of Gillespie's stochastic algorithm over COPASI, a fast biochemical-reaction software simulator that is widely used in computational biology; they yield a 15 500× speedup over equivalent MATLAB stochastic simulations. The chip emulation results are consistent with these software simulations over a large range of signal-to-noise ratios. Most importantly, our physical emulation of Poisson chemical dynamics does not involve any inherently sequential processes and updates such that, unlike prior exact simulation approaches, they are parallelizable, asynchronous, and enable even more speedup for larger-size networks.
细胞中复杂相互作用的生化反应途径的分析和模拟在系统生物学和医学中都很重要。然而,即使是少数几个噪声或随机耦合生化反应的动力学模拟也非常耗时。在很大程度上,这是因为随机数和泊松过程生成的昂贵成本以及存在僵硬、耦合、非线性微分方程。在这里,我们证明我们可以放大芯片中固有的热噪声,从而从物理上模拟随机性,从而显著降低这些成本。同时,热力学生化反应中的分子通量映射到晶体管中的热力学电子电流,因此僵硬的非线性生化微分方程可以在紧凑、数字可编程、高度并行的模拟“细胞状”晶体管电路中精确模拟。对于涉及仅 80 个随机反应的小规模系统,我们的 0.35-μm BiCMOS 芯片在 Gillespie 的随机算法的模拟时间上相对于广泛用于计算生物学的快速生化反应软件模拟器 COPASI 提高了 311 倍;相对于等效的 MATLAB 随机模拟提高了 15500 倍。芯片仿真结果与这些软件仿真在很大的信噪比范围内一致。最重要的是,我们对泊松化学动力学的物理仿真不涉及任何固有顺序过程和更新,因此与之前的精确仿真方法不同,它们是可并行化的、异步的,并且可以为更大规模的网络提供更多的加速。