Suppr超能文献

推断景观遗传学中的因果关系:赖特因果模型对距离矩阵的扩展

Inferring Causalities in Landscape Genetics: An Extension of Wright's Causal Modeling to Distance Matrices.

作者信息

Fourtune Lisa, Prunier Jérôme G, Paz-Vinas Ivan, Loot Géraldine, Veyssière Charlotte, Blanchet Simon

出版信息

Am Nat. 2018 Apr;191(4):491-508. doi: 10.1086/696233. Epub 2018 Feb 14.

Abstract

Identifying landscape features that affect functional connectivity among populations is a major challenge in fundamental and applied sciences. Landscape genetics combines landscape and genetic data to address this issue, with the main objective of disentangling direct and indirect relationships among an intricate set of variables. Causal modeling has strong potential to address the complex nature of landscape genetic data sets. However, this statistical approach was not initially developed to address the pairwise distance matrices commonly used in landscape genetics. Here, we aimed to extend the applicability of two causal modeling methods-that is, maximum-likelihood path analysis and the directional separation test-by developing statistical approaches aimed at handling distance matrices and improving functional connectivity inference. Using simulations, we showed that these approaches greatly improved the robustness of the absolute (using a frequentist approach) and relative (using an information-theoretic approach) fits of the tested models. We used an empirical data set combining genetic information on a freshwater fish species (Gobio occitaniae) and detailed landscape descriptors to demonstrate the usefulness of causal modeling to identify functional connectivity in wild populations. Specifically, we demonstrated how direct and indirect relationships involving altitude, temperature, and oxygen concentration influenced within- and between-population genetic diversity of G. occitaniae.

摘要

识别影响种群间功能连通性的景观特征是基础科学和应用科学中的一项重大挑战。景观遗传学结合景观和遗传数据来解决这一问题,其主要目标是理清一组复杂变量之间的直接和间接关系。因果建模在解决景观遗传数据集的复杂性质方面具有很大潜力。然而,这种统计方法最初并非为处理景观遗传学中常用的成对距离矩阵而开发。在此,我们旨在通过开发旨在处理距离矩阵和改进功能连通性推断的统计方法,扩展两种因果建模方法——即最大似然路径分析和方向分离检验——的适用性。通过模拟,我们表明这些方法极大地提高了测试模型的绝对拟合(使用频率主义方法)和相对拟合(使用信息论方法)的稳健性。我们使用了一个实证数据集,该数据集结合了一种淡水鱼物种(奥克西坦尼雅罗非鱼)的遗传信息和详细的景观描述符,以证明因果建模在识别野生种群功能连通性方面的有用性。具体而言,我们展示了涉及海拔、温度和氧气浓度的直接和间接关系如何影响奥克西坦尼雅罗非鱼种群内和种群间的遗传多样性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验