Suppr超能文献

利用阑尾炎来提高儿童医疗补助计划参与率的估计。

Using Appendicitis to Improve Estimates of Childhood Medicaid Participation Rates.

机构信息

Center for Outcomes Research, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa; Department of Health Care Management, The Wharton School, University of Pennsylvania, Philadelphia, Pa; The Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pa.

Center for Outcomes Research, Children's Hospital of Philadelphia, Philadelphia, Pa.

出版信息

Acad Pediatr. 2018 Jul;18(5):593-600. doi: 10.1016/j.acap.2018.03.008. Epub 2018 Mar 23.

Abstract

OBJECTIVE

Administrative data are often used to estimate state Medicaid/Children's Health Insurance Program duration of enrollment and insurance continuity, but they are generally not used to estimate participation (the fraction of eligible children enrolled) because administrative data do not include reasons for disenrollment and cannot observe eligible never-enrolled children, causing estimates of eligible unenrolled to be inaccurate. Analysts are therefore forced to either utilize survey information that is not generally linkable to administrative claims or rely on duration and continuity measures derived from administrative data and forgo estimating claims-based participation. We introduce appendectomy-based participation (ABP) to estimate statewide participation rates using claims by taking advantage of a natural experiment around statewide appendicitis admissions to improve the accuracy of participation rate estimates.

METHODS

We used Medicaid Analytic eXtract (MAX) for 2008-2010; and the American Community Survey for 2008-2010 from 43 states to calculate ABP, continuity ratio, duration, and participation based on the American Community Survey (ACS).

RESULTS

In the validation study, median participation rate using ABP was 86% versus 87% for ACS-based participation estimates using logical edits and 84% without logical edits. Correlations between ABP and ACS with or without logical edits was 0.86 (P < .0001). Using regression analysis, ABP alone was a significant predictor of ACS (P < .0001) with or without logical edits, and adding duration and/or the continuity ratio did not significantly improve the model.

CONCLUSION

Using the ABP rate derived from administrative claims (MAX) is a valid method to estimate statewide public insurance participation rates in children.

摘要

目的

行政数据通常用于估计州医疗补助/儿童健康保险计划的参保期限和保险连续性,但一般不用于估计参保率(参保合格儿童的比例),因为行政数据不包括退保原因,也无法观察合格但从未参保的儿童,从而导致对合格未参保儿童的估计不准确。因此,分析人员要么利用通常与行政索赔无关的调查信息,要么依赖于行政数据得出的持续时间和连续性衡量标准,而放弃基于索赔的参保率估计。我们利用阑尾切除术参与度(ABP)来估计全州的参保率,方法是利用全州范围内阑尾炎入院的自然实验来利用索赔数据,从而提高参保率估计的准确性。

方法

我们使用了 Medicaid Analytic eXtract(MAX)数据库,时间范围是 2008 年至 2010 年;以及 2008 年至 2010 年来自 43 个州的美国社区调查(ACS)数据,以计算基于美国社区调查(ACS)的 ABP、连续性比、持续时间和参保率。

结果

在验证研究中,使用 ABP 的中位数参保率为 86%,而使用逻辑编辑的基于 ACS 的参保率估计值为 87%,不使用逻辑编辑的为 84%。ABP 与 ACS 的相关性,无论是否使用逻辑编辑,均为 0.86(P<0.0001)。使用回归分析,ABP 本身是 ACS 的一个显著预测因素(P<0.0001),无论是否使用逻辑编辑,而增加持续时间和/或连续性比并不会显著改善模型。

结论

使用源自行政索赔(MAX)的 ABP 率是一种有效方法,可以估计儿童的全州公共保险参保率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验