Suppr超能文献

从 ADHD 啮齿动物模型中 EEG 的药效学效应中半自动发现生物标志物。

Semi-Automated Biomarker Discovery from Pharmacodynamic Effects on EEG in ADHD Rodent Models.

机构信息

RIKEN Brain Science Institute, Hirosawa, Wako, Saitama, Japan.

SHIONOGI & Co., Ltd., Futaba, Toyonaka, Osaka, Japan.

出版信息

Sci Rep. 2018 Mar 26;8(1):5202. doi: 10.1038/s41598-018-23450-y.

Abstract

We propose a novel semi-automatic approach to design biomarkers for capturing pharmacodynamic effects induced by pharmacological agents on the spectral power of electroencephalography (EEG) recordings. We apply this methodology to investigate the pharmacodynamic effects of methylphenidate (MPH) and atomoxetine (ATX) on attention deficit/hyperactivity disorder (ADHD), using rodent models. We inject the two agents into the spontaneously hypertensive rat (SHR) model of ADHD, the Wistar-Kyoto rat (WKY), and the Wistar rat (WIS), and record their EEG patterns. To assess individual EEG patterns quantitatively, we use an integrated methodological approach, which consists of calculating the mean, slope and intercept parameters of temporal records of EEG spectral power using a smoothing filter, outlier truncation, and linear regression. We apply Fisher discriminant analysis (FDA) to identify dominant discriminants to be heuristically consolidated into several new composite biomarkers. Results of the analysis of variance (ANOVA) and t-test show benefits in pharmacodynamic parameters, especially the slope parameter. Composite biomarker evaluation confirms their validity for genetic model stratification and the effects of the pharmacological agents used. The methodology proposed is of generic use as an approach to investigating thoroughly the dynamics of the EEG spectral power.

摘要

我们提出了一种新颖的半自动方法来设计生物标志物,以捕捉药理学药物对脑电图 (EEG) 记录的光谱功率产生的药效学效应。我们应用这种方法来研究哌甲酯 (MPH) 和阿托西汀 (ATX) 对注意缺陷/多动障碍 (ADHD) 的药效学影响,使用啮齿动物模型。我们将这两种药物注射到 ADHD 的自发性高血压大鼠 (SHR) 模型、Wistar-Kyoto 大鼠 (WKY) 和 Wistar 大鼠 (WIS) 中,并记录它们的 EEG 模式。为了定量评估个体 EEG 模式,我们使用一种综合的方法学方法,该方法包括使用平滑滤波器、异常值截断和线性回归计算 EEG 光谱功率时间记录的平均值、斜率和截距参数。我们应用 Fisher 判别分析 (FDA) 来识别主要判别因素,以便启发式地将其合并为几个新的复合生物标志物。方差分析 (ANOVA) 和 t 检验的结果显示药效学参数的优势,特别是斜率参数。复合生物标志物评估证实了它们在遗传模型分层和所用药物的作用方面的有效性。所提出的方法具有通用性,可以深入研究 EEG 光谱功率的动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc09/5980101/5edb961b5c43/41598_2018_23450_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验