Ranjith Kugalur Shanmugam, Celebioglu Asli, Uyar Tamer
Nanotechnology. 2018 Jun 15;29(24):245602. doi: 10.1088/1361-6528/aab9da. Epub 2018 Mar 27.
Here, we present a precise process for synthesizing Pd-Ag bimetallic nanoparticles (NPs) onto polymeric nanofibers by decorating Pd-NPs through atomic layer deposition followed by a chemical reduction process for tagging Ag nanostructures with bimetallic functionality. The results show that Pd-NPs act as a nucleation platform for tagging Ag and form Pd-Ag bimetallic NPs with a monodisperse nature with significant catalytic enhancement to the reaction rate over the bimetallic nature of the Pd-Ag ratio. A Pd-NP decorated polymeric nanofibrous web acts as an excellent platform for the encapsulation or interaction of Ag, which prevents agglomeration and promotes the interaction of Ag ions only on the surface of the Pd-NPs. We observed an effective reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH) to access the catalytic activity of Pd-Ag bimetallic NPs on a free-standing flexible polymeric nanofibrous web as a support. The captive formation of the polymeric nanofibrous web with Pd-Ag bimetallic functionality exhibited superior and stable catalytic performance with reduction rates of 0.0719, 0.1520, and 0.0871 min for different loadings of Ag on Pd decorated nanofibrous webs such as Pd/Ag(0.01), Pd/Ag(0.03), and Pd/Ag(0.05), respectively. The highly faceted Pd-Ag NPs with an immobilized nature improves the catalytic functionality by enhancing the binding energy of the 4-NP adsorbate to the surface of the NPs. With the aid of bimetallic functionality, the nanofibrous web was demonstrated as a hybrid heterogeneous photocatalyst with a 3.16-fold enhancement in the reaction rate as compared with the monometallic decorative nature of NaBH as a reducing agent. The effective role of the monodisperse nature of Pd ions with an ultralow content as low as 3 wt% and the tunable ratio of Ag on the nanofibrous web induced effective catalytic activity over multiple cycles.
在此,我们展示了一种精确的方法,通过原子层沉积修饰钯纳米颗粒(Pd-NPs),随后进行化学还原过程以标记具有双金属功能的银纳米结构,从而在聚合物纳米纤维上合成钯银双金属纳米颗粒(NPs)。结果表明,Pd-NPs作为标记银的成核平台,形成具有单分散性质的Pd-Ag双金属NPs,相较于Pd-Ag比例的双金属性质,其对反应速率具有显著的催化增强作用。一个装饰有Pd-NP的聚合物纳米纤维网是封装或与银相互作用的极佳平台,它可防止团聚,并仅促进银离子在Pd-NPs表面的相互作用。我们观察到,通过硼氢化钠(NaBH)将4-硝基苯酚(4-NP)有效还原为4-氨基苯酚(4-AP),以获得作为载体的独立柔性聚合物纳米纤维网上Pd-Ag双金属NPs的催化活性。具有Pd-Ag双金属功能的聚合物纳米纤维网的俘获形成表现出优异且稳定的催化性能,对于Pd装饰的纳米纤维网上不同银负载量,如Pd/Ag(0.01)、Pd/Ag(0.03)和Pd/Ag(0.05),还原速率分别为0.0719、0.1520和0.0871 min⁻¹。具有固定性质的高度多面的Pd-Ag NPs通过增强4-NP吸附物与NPs表面的结合能来提高催化功能。借助双金属功能,纳米纤维网被证明是一种混合多相光催化剂,与作为还原剂的NaBH的单金属装饰性质相比,反应速率提高了3.16倍。超低含量低至3 wt%的Pd离子的单分散性质以及纳米纤维网上银的可调比例的有效作用,在多个循环中诱导了有效的催化活性。