Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.
Front Immunol. 2018 Mar 8;9:425. doi: 10.3389/fimmu.2018.00425. eCollection 2018.
CCCTC-binding factor (CTCF) is largely responsible for the 3D architecture of the genome, in concert with the action of cohesin, through the creation of long-range chromatin loops. Cohesin is hypothesized to be the main driver of these long-range chromatin interactions by the process of loop extrusion. Here, we performed ChIP-seq for CTCF and cohesin in two stages each of T and B cell differentiation and examined the binding pattern in all six antigen receptor (AgR) loci in these lymphocyte progenitors and in mature T and B cells, ES cells, and fibroblasts. The four large AgR loci have many bound CTCF sites, most of which are only occupied in lymphocytes, while only the CTCF sites at the end of each locus near the enhancers or J genes tend to be bound in non-lymphoid cells also. However, despite the generalized lymphocyte restriction of CTCF binding in AgR loci, the Igκ locus is the only locus that also shows significant lineage-specificity (T vs. B cells) and developmental stage-specificity (pre-B vs. pro-B) in CTCF binding. We show that cohesin binding shows greater lineage- and stage-specificity than CTCF at most AgR loci, providing more specificity to the loops. We also show that the culture of pro-B cells in IL7, a common practice to expand the number of cells before ChIP-seq, results in a CTCF-binding pattern resembling pre-B cells, as well as other epigenetic and transcriptional characteristics of pre-B cells. Analysis of the orientation of the CTCF sites show that all sites within the large V portions of the Igh and TCRβ loci have the same orientation. This suggests either a lack of requirement for convergent CTCF sites creating loops, or indicates an absence of any loops between CTCF sites within the V region portion of those loci but only loops to the convergent sites at the D-J-enhancer end of each locus. The V region portions of the Igκ and TCRα/δ loci, by contrast, have CTCF sites in both orientations, providing many options for creating CTCF-mediated convergent loops throughout the loci. CTCF/cohesin loops, along with transcription factors, drives contraction of AgR loci to facilitate the creation of a diverse repertoire of antibodies and T cell receptors.
CCCTC 结合因子(CTCF)与黏合蛋白共同作用,通过创建长距离染色质环,在很大程度上负责基因组的 3D 结构。黏合蛋白通过环挤压过程被假设为这些长距离染色质相互作用的主要驱动因素。在这里,我们在 T 细胞和 B 细胞分化的两个阶段分别进行了 CTCF 和黏合蛋白的 ChIP-seq 实验,并在这些淋巴细胞前体以及成熟的 T 和 B 细胞、胚胎干细胞和成纤维细胞中的所有六个抗原受体(AgR)基因座中检查了结合模式。四个大的 AgR 基因座有许多结合的 CTCF 位点,其中大多数仅在淋巴细胞中被占据,而只有每个基因座末端靠近增强子或 J 基因的 CTCF 位点也倾向于在非淋巴细胞中被占据。然而,尽管 CTCF 在 AgR 基因座中的结合在淋巴细胞中普遍受到限制,但 Igκ 基因座是唯一在 CTCF 结合中也表现出显著的谱系特异性(T 细胞与 B 细胞)和发育阶段特异性(前 B 细胞与前体 B 细胞)的基因座。我们表明,黏合蛋白结合在大多数 AgR 基因座中比 CTCF 具有更大的谱系和阶段特异性,为环提供了更多的特异性。我们还表明,在 IL7 中培养前体 B 细胞,这是在 ChIP-seq 之前扩大细胞数量的常见做法,会导致类似于前 B 细胞的 CTCF 结合模式,以及前 B 细胞的其他表观遗传和转录特征。对 CTCF 位点取向的分析表明,Igh 和 TCRβ 基因座大 V 部分内的所有位点都具有相同的取向。这要么表明不需要形成环的会聚 CTCF 位点,要么表明在这些基因座的 V 区部分内的 CTCF 位点之间没有任何环,但只有在每个基因座的 D-J-增强子末端的会聚位点之间有环。相比之下,Igκ 和 TCRα/δ 基因座的 V 区部分具有两种取向的 CTCF 位点,为整个基因座中创建 CTCF 介导的会聚环提供了许多选择。CTCF/黏合蛋白环与转录因子一起驱动 AgR 基因座的收缩,以促进抗体和 T 细胞受体多样化的库的形成。