Cátedra en Bioinformática, Escuela de Medicina, Tecnológico de Monterrey, Av. Morones Prieto Pte 3000, Col. Los Doctores, Monterrey, NL, México.
Universidad Autónoma de Zacatecas, Zacatecas, Zacatecas, Mexico, CP.
PLoS One. 2018 Mar 29;13(3):e0193871. doi: 10.1371/journal.pone.0193871. eCollection 2018.
In breast cancer, well-known gene expression subtypes have been related to a specific clinical outcome. However, their impact on the breast tissue phenotype has been poorly studied. Here, we investigate the association of imaging data of tumors to gene expression signatures from 71 patients with breast cancer that underwent pre-treatment digital mammograms and tumor biopsies. From digital mammograms, a semi-automated radiogenomics analysis generated 1,078 features describing the shape, signal distribution, and texture of tumors along their contralateral image used as control. From tumor biopsy, we estimated the OncotypeDX and PAM50 recurrence scores using gene expression microarrays. Then, we used multivariate analysis under stringent cross-validation to train models predicting recurrence scores. Few univariate features reached Spearman correlation coefficients above 0.4. Nevertheless, multivariate analysis yielded significantly correlated models for both signatures (correlation of OncotypeDX = 0.49 ± 0.07 and PAM50 = 0.32 ± 0.10 in stringent cross-validation and OncotypeDX = 0.83 and PAM50 = 0.78 for a unique model). Equivalent models trained from the unaffected contralateral breast were not correlated suggesting that the image signatures were tumor-specific and that overfitting was not a considerable issue. We also noted that models were improved by combining clinical information (triple negative status and progesterone receptor). The models used mostly wavelets and fractal features suggesting their importance to capture tumor information. Our results suggest that molecular-based recurrence risk and breast cancer subtypes have observable radiographic phenotypes. To our knowledge, this is the first study associating mammographic information to gene expression recurrence signatures.
在乳腺癌中,已知的基因表达亚型与特定的临床结局相关。然而,它们对乳腺组织表型的影响尚未得到充分研究。在这里,我们研究了 71 名接受治疗前数字乳腺 X 线摄影和肿瘤活检的乳腺癌患者的肿瘤影像学数据与基因表达特征之间的关联。从数字乳腺 X 线摄影中,我们通过半自动化的放射基因组分析生成了 1078 个特征,这些特征描述了肿瘤的形状、信号分布和纹理,以及与其对侧图像的对比。从肿瘤活检中,我们使用基因表达微阵列估计了 OncotypeDX 和 PAM50 复发评分。然后,我们使用严格的交叉验证下的多变量分析来训练预测复发评分的模型。少数单变量特征的斯皮尔曼相关系数达到 0.4 以上。然而,多变量分析为两个特征都产生了显著相关的模型(严格交叉验证时 OncotypeDX 的相关性为 0.49 ± 0.07,PAM50 的相关性为 0.32 ± 0.10,而唯一模型的相关性为 OncotypeDX = 0.83 和 PAM50 = 0.78)。从未受影响的对侧乳房训练的等效模型没有相关性,这表明图像特征是肿瘤特异性的,并且过拟合不是一个重要问题。我们还注意到,通过结合临床信息(三阴性状态和孕激素受体),可以改善模型。模型主要使用小波和分形特征,这表明它们对于捕获肿瘤信息很重要。我们的研究结果表明,基于分子的复发风险和乳腺癌亚型具有可观察的放射影像学表型。据我们所知,这是第一项将乳腺影像学信息与基因表达复发特征相关联的研究。