Diéguez L, Winter M, Molan S, Monis P, King B, Thierry B
1Future Industries Institute and ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia Australia.
2International Iberian Nanotechnology Laboratory, Braga, Portugal.
J Biol Eng. 2018 Mar 27;12:4. doi: 10.1186/s13036-018-0095-6. eCollection 2018.
Protecting drinking water supplies from pathogens such as is a major concern for water utilities worldwide. The sensitivity and specificity of current detection methods are largely determined by the effectiveness of the concentration and separation methods used. The purpose of this study is to develop micromixers able to specifically isolate and concentrate , while allowing in situ analysis.
In this study, disposable microfluidic micromixers were fabricated to effectively isolate oocysts from water samples, while allowing direct observation and enabling quantification of oocysts captured in the device using high quality immunofluorescence microscopy. In parallel, quantitative analysis of the capture yield was carried out by analyzing the waste from the microfluidics outlet with an Imaging Flow Cytometer. At the optimal flow rate, capture efficiencies up to 96% were achieved in spiked samples.
Scaled microfluidic isolation and detection of will provide a faster and more efficient detection method for compared to other available laboratory-scale technologies.
保护饮用水供应免受诸如[病原体名称未给出]等病原体污染是全球水务公司的主要关注点。当前检测方法的灵敏度和特异性在很大程度上取决于所使用的浓缩和分离方法的有效性。本研究的目的是开发能够特异性分离和浓缩[病原体名称未给出],同时允许原位分析的微混合器。
在本研究中,制备了一次性微流控微混合器,以有效地从水样中分离出[病原体名称未给出]卵囊,同时允许直接观察,并能够使用高质量免疫荧光显微镜对捕获在装置中的卵囊进行定量。同时,通过使用成像流式细胞仪分析微流控出口的废液来对捕获率进行定量分析。在最佳流速下,加标样品的捕获效率高达96%。
与其他现有的实验室规模技术相比,规模化微流控分离和检测[病原体名称未给出]将为[病原体名称未给出]提供一种更快、更高效的检测方法。