Suppr超能文献

卤代芳烃π相互作用调节抑制剂的驻留时间。

Halogen-Aromatic π Interactions Modulate Inhibitor Residence Times.

作者信息

Heroven Christina, Georgi Victoria, Ganotra Gaurav K, Brennan Paul, Wolfreys Finn, Wade Rebecca C, Fernández-Montalván Amaury E, Chaikuad Apirat, Knapp Stefan

机构信息

Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK.

Bayer AG, Drug Discovery, Pharmaceuticals, Lead Discovery Berlin, 13353, Berlin, Germany.

出版信息

Angew Chem Int Ed Engl. 2018 Jun 11;57(24):7220-7224. doi: 10.1002/anie.201801666. Epub 2018 May 9.

Abstract

Prolonged drug residence times may result in longer-lasting drug efficacy, improved pharmacodynamic properties, and "kinetic selectivity" over off-targets with high drug dissociation rates. However, few strategies have been elaborated to rationally modulate drug residence time and thereby to integrate this key property into the drug development process. Herein, we show that the interaction between a halogen moiety on an inhibitor and an aromatic residue in the target protein can significantly increase inhibitor residence time. By using the interaction of the serine/threonine kinase haspin with 5-iodotubercidin (5-iTU) derivatives as a model for an archetypal active-state (type I) kinase-inhibitor binding mode, we demonstrate that inhibitor residence times markedly increase with the size and polarizability of the halogen atom. The halogen-aromatic π interactions in the haspin-inhibitor complexes were characterized by means of kinetic, thermodynamic, and structural measurements along with binding-energy calculations.

摘要

延长药物驻留时间可能会导致更持久的药效、改善的药效学性质以及对具有高药物解离速率的脱靶靶点的“动力学选择性”。然而,很少有策略被详细阐述来合理调节药物驻留时间,从而将这一关键性质整合到药物开发过程中。在此,我们表明抑制剂上的卤素部分与靶蛋白中的芳香族残基之间的相互作用可显著增加抑制剂的驻留时间。通过使用丝氨酸/苏氨酸激酶哈斯平与5-碘杀结核菌素(5-iTU)衍生物的相互作用作为典型活性状态(I型)激酶-抑制剂结合模式的模型,我们证明抑制剂的驻留时间随着卤素原子的大小和极化率而显著增加。通过动力学、热力学和结构测量以及结合能计算对哈斯平-抑制剂复合物中的卤素-芳香族π相互作用进行了表征。

相似文献

1
Halogen-Aromatic π Interactions Modulate Inhibitor Residence Times.
Angew Chem Int Ed Engl. 2018 Jun 11;57(24):7220-7224. doi: 10.1002/anie.201801666. Epub 2018 May 9.
2
Exploring the thermodynamic, kinetic and inhibitory mechanisms of 5-iTU targeting mitotic kinase haspin by integrated molecular dynamics.
Phys Chem Chem Phys. 2021 Sep 14;23(34):18404-18413. doi: 10.1039/d1cp02783b. Epub 2021 Aug 20.
4
6
Halogen bonds involved in binding of halogenated ligands by protein kinases.
Acta Biochim Pol. 2016;63(2):203-14. doi: 10.18388/abp.2015_1106. Epub 2016 Apr 20.
7
Structure, Roles and Inhibitors of a Mitotic Protein Kinase Haspin.
Curr Med Chem. 2017;24(21):2276-2293. doi: 10.2174/0929867324666170414155520.
9

引用本文的文献

1
Stable H-bond networks are crucial for selective CLK1 inhibition: a computational perspective.
Front Chem. 2025 Jun 17;13:1582515. doi: 10.3389/fchem.2025.1582515. eCollection 2025.
2
Covalent Targeting Leads to the Development of a LIMK1 Isoform-Selective Inhibitor.
J Med Chem. 2025 Jul 24;68(14):15026-15049. doi: 10.1021/acs.jmedchem.5c01204. Epub 2025 Jul 2.
3
Comparison of QM Methods for the Evaluation of Halogen-π Interactions for Large-Scale Data Generation.
J Chem Theory Comput. 2025 Jun 24;21(12):6174-6183. doi: 10.1021/acs.jctc.5c00456. Epub 2025 Jun 9.
4
Synthesis of Differentially Halogenated Lissoclimide Analogues To Probe Ribosome E-Site Binding.
ACS Chem Biol. 2025 Apr 18;20(4):858-869. doi: 10.1021/acschembio.4c00825. Epub 2025 Mar 22.
6
Interplay of halogen bonding and solvation in protein-ligand binding.
iScience. 2024 Mar 29;27(4):109636. doi: 10.1016/j.isci.2024.109636. eCollection 2024 Apr 19.
7
5-Iodotubercidin sensitizes cells to RIPK1-dependent necroptosis by interfering with NFκB signaling.
Cell Death Discov. 2023 Jul 26;9(1):262. doi: 10.1038/s41420-023-01576-x.
8
Structure-affinity and structure-residence time relationships of macrocyclic Gα protein inhibitors.
iScience. 2023 Mar 23;26(4):106492. doi: 10.1016/j.isci.2023.106492. eCollection 2023 Apr 21.

本文引用的文献

1
The Cysteinome of Protein Kinases as a Target in Drug Development.
Angew Chem Int Ed Engl. 2018 Apr 9;57(16):4372-4385. doi: 10.1002/anie.201707875. Epub 2018 Feb 2.
2
Compound Selectivity and Target Residence Time of Kinase Inhibitors Studied with Surface Plasmon Resonance.
J Mol Biol. 2017 Feb 17;429(4):574-586. doi: 10.1016/j.jmb.2016.12.019. Epub 2016 Dec 30.
3
Selective JAK3 Inhibitors with a Covalent Reversible Binding Mode Targeting a New Induced Fit Binding Pocket.
Cell Chem Biol. 2016 Nov 17;23(11):1335-1340. doi: 10.1016/j.chembiol.2016.10.008. Epub 2016 Nov 10.
5
The ins and outs of selective kinase inhibitor development.
Nat Chem Biol. 2015 Nov;11(11):818-21. doi: 10.1038/nchembio.1938.
6
Prolonged and tunable residence time using reversible covalent kinase inhibitors.
Nat Chem Biol. 2015 Jul;11(7):525-31. doi: 10.1038/nchembio.1817. Epub 2015 May 25.
7
Biomolecular halogen bonds.
Top Curr Chem. 2015;358:241-76. doi: 10.1007/128_2014_551.
8
A universal homogeneous assay for high-throughput determination of binding kinetics.
Anal Biochem. 2015 Jan 1;468:42-9. doi: 10.1016/j.ab.2014.09.007. Epub 2014 Sep 18.
9
A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics.
Nat Chem Biol. 2014 Oct;10(10):853-60. doi: 10.1038/nchembio.1629. Epub 2014 Sep 7.
10
Exploration of type II binding mode: A privileged approach for kinase inhibitor focused drug discovery?
ACS Chem Biol. 2014 Jun 20;9(6):1230-41. doi: 10.1021/cb500129t. Epub 2014 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验