Suppr超能文献

使用惯性传感器和逆向运动学对步态参数进行量化。

Quantification of gait parameters with inertial sensors and inverse kinematics.

作者信息

Bötzel Kai, Olivares Alberto, Cunha João Paulo, Górriz Sáez Juan Manuel, Weiss Robin, Plate Annika

机构信息

Department of Neurology, Ludwig-Maximilians University, Munich, Germany.

Department of Signal Theory, Networking and Communications, University of Granada, Spain.

出版信息

J Biomech. 2018 Apr 27;72:207-214. doi: 10.1016/j.jbiomech.2018.03.012. Epub 2018 Mar 15.

Abstract

UNLABELLED

Measuring human gait is important in medicine to obtain outcome parameter for therapy, for instance in Parkinson's disease. Recently, small inertial sensors became available which allow for the registration of limb-position outside of the limited space of gait laboratories. The computation of gait parameters based on such recordings has been the subject of many scientific papers. We want to add to this knowledge by presenting a 4-segment leg model which is based on inverse kinematic and Kalman filtering of data from inertial sensors. To evaluate the model, data from four leg segments (shanks and thighs) were recorded synchronously with accelerometers and gyroscopes and a 3D motion capture system while subjects (n = 12) walked at three different velocities on a treadmill. Angular position of leg segments was computed from accelerometers and gyroscopes by Kalman filtering and compared to data from the motion capture system. The four-segment leg model takes the stance foot as a pivotal point and computes the position of the remaining segments as a kinematic chain (inverse kinematics). Second, we evaluated the contribution of pelvic movements to the model and evaluated a five segment model (shanks, thighs and pelvis) against ground-truth data from the motion capture system and the path of the treadmill.

RESULTS

We found the precision of the Kalman filtered angular position is in the range of 2-6° (RMS error). The 4-segment leg model computed stride length and length of gait path with a constant undershoot of 3% for slow and 7% for fast gait. The integration of a 5th segment (pelvis) into the model increased its precision. The advantages of this model and ideas for further improvements are discussed.

摘要

未标注

在医学中,测量人类步态对于获取治疗的结果参数非常重要,例如在帕金森病中。最近,小型惯性传感器问世,这使得在步态实验室有限空间之外记录肢体位置成为可能。基于此类记录计算步态参数一直是许多科学论文的主题。我们希望通过提出一种基于惯性传感器数据的逆运动学和卡尔曼滤波的四段腿部模型来丰富这方面的知识。为了评估该模型,在受试者(n = 12)以三种不同速度在跑步机上行走时,使用加速度计、陀螺仪和三维运动捕捉系统同步记录四个腿部节段(小腿和大腿)的数据。通过卡尔曼滤波从加速度计和陀螺仪计算腿部节段的角位置,并与运动捕捉系统的数据进行比较。四段腿部模型以站立脚为枢轴点,将其余节段的位置计算为运动链(逆运动学)。其次,我们评估了骨盆运动对模型的贡献,并针对来自运动捕捉系统和跑步机路径的地面真值数据评估了五段模型(小腿、大腿和骨盆)。

结果

我们发现卡尔曼滤波后的角位置精度在2 - 6°范围内(均方根误差)。四段腿部模型计算的步幅长度和步态路径长度,慢步态时恒定低估3%,快步态时低估7%。将第五个节段(骨盆)纳入模型提高了其精度。本文讨论了该模型的优点以及进一步改进的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验