Suppr超能文献

定量成像流式细胞术分析感染军团菌的粘菌变形虫揭示了逆行转运对病原体空泡组成的影响。

Quantitative Imaging Flow Cytometry of Legionella-Infected Dictyostelium Amoebae Reveals the Impact of Retrograde Trafficking on Pathogen Vacuole Composition.

机构信息

Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.

Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland

出版信息

Appl Environ Microbiol. 2018 May 17;84(11). doi: 10.1128/AEM.00158-18. Print 2018 Jun 1.

Abstract

The ubiquitous environmental bacterium survives and replicates within amoebae and human macrophages by forming a -containing vacuole (LCV). In an intricate process governed by the bacterial Icm/Dot type IV secretion system and a plethora of effector proteins, the nascent LCV interferes with a number of intracellular trafficking pathways, including retrograde transport from endosomes to the Golgi apparatus. Conserved retrograde trafficking components, such as the retromer coat complex or the phosphoinositide (PI) 5-phosphatase 5-phosphatase 4 (Dd5P4)/oculocerebrorenal syndrome of Lowe (OCRL), restrict intracellular replication of by an unknown mechanism. Here, we established an imaging flow cytometry (IFC) approach to assess in a rapid, unbiased, and large-scale quantitative manner the role of retrograde-linked PI metabolism and actin dynamics in the LCV composition. Exploiting genetics, we found that Dd5P4 modulates the acquisition of fluorescently labeled LCV markers, such as calnexin, the small GTPase Rab1 (but not Rab7 and Rab8), and retrograde trafficking components (Vps5, Vps26, Vps35). The actin-nucleating protein and retromer interactor WASH (Wiskott-Aldrich syndrome protein [WASP] and suppressor of cAMP receptor [SCAR] homologue) promotes the accumulation of Rab1 and Rab8 on LCVs. Collectively, our findings validate IFC for the quantitative and unbiased analysis of the pathogen vacuole composition and reveal the impact of retrograde-linked PI metabolism and actin dynamics on the LCV composition. The IFC approach employed here can be adapted for a molecular analysis of the pathogen vacuole composition of other amoeba-resistant pathogens. is an amoeba-resistant environmental bacterium which can cause a life-threatening pneumonia termed Legionnaires' disease. In order to replicate intracellularly, the opportunistic pathogen forms a protective compartment, the -containing vacuole (LCV). An in-depth analysis of the LCV composition and the complex process of pathogen vacuole formation is crucial for understanding the virulence of Here, we established an imaging flow cytometry (IFC) approach to assess in a rapid, unbiased, and quantitative manner the accumulation of fluorescently labeled markers and probes on LCVs. Using IFC and -infected or defined mutant amoebae, a role for phosphoinositide (PI) metabolism, retrograde trafficking, and the actin cytoskeleton in the LCV composition was revealed. In principle, the powerful IFC approach can be used to analyze the molecular composition of any cellular compartment harboring bacterial pathogens.

摘要

无处不在的环境细菌通过形成含有 LC 的空泡 (LCV) 在变形虫和人类巨噬细胞中存活和复制。在细菌 Icm/Dot 型 IV 分泌系统和大量效应蛋白调控的复杂过程中,新生的 LCV 干扰了许多细胞内运输途径,包括从内体逆行运输到高尔基体。保守的逆行运输成分,如逆行转运外套复合物或磷酸肌醇 (PI) 5-磷酸酶 5-磷酸酶 4 (Dd5P4)/ Lowe 眼-脑-肾综合征 (OCRL),通过未知机制限制 的细胞内复制。在这里,我们建立了一种成像流式细胞术 (IFC) 方法,以快速、无偏倚和大规模定量评估逆行相关 PI 代谢和肌动蛋白动力学在 LCV 组成中的作用。利用遗传学,我们发现 Dd5P4 调节荧光标记的 LCV 标记物(如 calnexin、小分子 GTPase Rab1(但不是 Rab7 和 Rab8)和逆行运输成分(Vps5、Vps26、Vps35)的获取。肌动蛋白成核蛋白和逆行转运相互作用蛋白 WASH(Wiskott-Aldrich 综合征蛋白 [WASP] 和环腺苷酸受体 [SCAR] 同源物)促进 Rab1 和 Rab8 在 LCV 上的积累。总之,我们的发现验证了 IFC 可用于定量和无偏倚地分析病原体空泡组成,并揭示了逆行相关 PI 代谢和肌动蛋白动力学对 LCV 组成的影响。这里采用的 IFC 方法可以适用于其他变形虫抗性病原体的病原体空泡组成的分子分析。是一种抗变形虫的环境细菌,可引起危及生命的肺炎,称为军团病。为了在细胞内复制,机会性病原体形成一个保护性隔室,即含有 LC 的空泡 (LCV)。深入分析 LCV 组成和病原体空泡形成的复杂过程对于理解 的毒力至关重要。在这里,我们建立了一种成像流式细胞术 (IFC) 方法,以快速、无偏倚和定量的方式评估荧光标记标记物和探针在 LCV 上的积累。使用 IFC 和感染的 或定义的突变变形虫,揭示了磷肌醇 (PI) 代谢、逆行运输和肌动蛋白细胞骨架在 LCV 组成中的作用。原则上,强大的 IFC 方法可用于分析任何含有细菌病原体的细胞区室的分子组成。

相似文献

2
-Containing Vacuoles Capture PtdIns(4)-Rich Vesicles Derived from the Golgi Apparatus.
mBio. 2018 Dec 11;9(6):e02420-18. doi: 10.1128/mBio.02420-18.
4
and as Cellular Models for Infection.
Front Cell Infect Microbiol. 2018 Mar 2;8:61. doi: 10.3389/fcimb.2018.00061. eCollection 2018.
8
Purification of pathogen vacuoles from Legionella-infected phagocytes.
J Vis Exp. 2012 Jun 19(64):4118. doi: 10.3791/4118.
9
Formation of the Replicative Compartment at the Crossroads of Retrograde Trafficking.
Front Cell Infect Microbiol. 2017 Nov 24;7:482. doi: 10.3389/fcimb.2017.00482. eCollection 2017.

引用本文的文献

1
Inter-kingdom signaling by the Legionella autoinducer LAI-1 involves the antimicrobial guanylate binding protein GBP.
PLoS Pathog. 2025 Apr 29;21(4):e1013026. doi: 10.1371/journal.ppat.1013026. eCollection 2025 Apr.
3
Legionella- and host-driven lipid flux at LCV-ER membrane contact sites promotes vacuole remodeling.
EMBO Rep. 2023 Mar 6;24(3):e56007. doi: 10.15252/embr.202256007. Epub 2023 Jan 2.
4
Dynamin Superfamily GTPases Implicated in Vesicle Trafficking and Host-Pathogen Interactions.
Front Cell Dev Biol. 2021 Oct 13;9:731964. doi: 10.3389/fcell.2021.731964. eCollection 2021.
5
Divergent Evolution of RCC1 Repeat Effectors Defines the Range of Ran GTPase Cycle Targets.
mBio. 2020 Mar 24;11(2):e00405-20. doi: 10.1128/mBio.00405-20.
6
Phosphoinositides and the Fate of in Phagocytes.
Front Immunol. 2020 Jan 30;11:25. doi: 10.3389/fimmu.2020.00025. eCollection 2020.
7
The vacuole guard hypothesis: how intravacuolar pathogens fight to maintain the integrity of their beloved home.
Curr Opin Microbiol. 2020 Apr;54:51-58. doi: 10.1016/j.mib.2020.01.008. Epub 2020 Feb 7.
8
Quorum sensing modulates the formation of virulent Legionella persisters within infected cells.
Nat Commun. 2019 Nov 18;10(1):5216. doi: 10.1038/s41467-019-13021-8.
9
-Containing Vacuoles Capture PtdIns(4)-Rich Vesicles Derived from the Golgi Apparatus.
mBio. 2018 Dec 11;9(6):e02420-18. doi: 10.1128/mBio.02420-18.

本文引用的文献

1
Mechanism of inhibition of retromer transport by the bacterial effector RidL.
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1446-E1454. doi: 10.1073/pnas.1717383115. Epub 2018 Jan 31.
2
Molecular mechanism for the subversion of the retromer coat by the effector RidL.
Proc Natl Acad Sci U S A. 2017 Dec 26;114(52):E11151-E11160. doi: 10.1073/pnas.1715361115. Epub 2017 Dec 11.
3
Formation of the Replicative Compartment at the Crossroads of Retrograde Trafficking.
Front Cell Infect Microbiol. 2017 Nov 24;7:482. doi: 10.3389/fcimb.2017.00482. eCollection 2017.
5
Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling.
Nat Cell Biol. 2017 Oct;19(10):1214-1225. doi: 10.1038/ncb3610. Epub 2017 Sep 11.
6
ER remodeling by the large GTPase atlastin promotes vacuolar growth of .
EMBO Rep. 2017 Oct;18(10):1817-1836. doi: 10.15252/embr.201743903. Epub 2017 Aug 23.
7
Nramp1 and NrampB Contribute to Resistance against in .
Front Cell Infect Microbiol. 2017 Jun 21;7:282. doi: 10.3389/fcimb.2017.00282. eCollection 2017.
9
Structural Mechanism for Cargo Recognition by the Retromer Complex.
Cell. 2016 Dec 1;167(6):1623-1635.e14. doi: 10.1016/j.cell.2016.10.056. Epub 2016 Nov 23.
10
WASH drives early recycling from macropinosomes and phagosomes to maintain surface phagocytic receptors.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5906-E5915. doi: 10.1073/pnas.1524532113. Epub 2016 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验