Suppr超能文献

转移概率有助于识别复杂系统中群落变化的潜在驱动因素。

Transition probabilities help identify putative drivers of community change in complex systems.

机构信息

Department of Biology, University of Massachusetts, Boston, Massachusetts, 02125, USA.

The Downeast Institute, P.O. Box 83, Bzeals, Maine, 04611, USA.

出版信息

Ecology. 2018 Jun;99(6):1357-1369. doi: 10.1002/ecy.2226.

Abstract

Understanding the role of larger-scale processes in modulating the assembly, structure, and dynamics of communities is critical for forecasting the effects of climate-change and managing ecosystems. Developing this comprehensive perspective is difficult though, because species interactions are complex, interdependent, and dynamic through space and time. Typically, experiments focus on tractable subsets of interactions that will be most critical to investigate and explain shifts in communities, but qualitatively base these choices on experience, natural history, and theory. One quantitative approach to identify the putative forces regulating communities, without reducing system complexity, is estimating transition probabilities among species occupying space (i.e., multispecies Markov chain models). Although not mechanistic, these models estimate the relative frequency and importance of ecological pathways in community assembly and dynamics, and can serve as a framework to identify how pathways change across large scales and which are most important to investigate further. Here, we demonstrate this method in the Gulf of Maine (GOM) intertidal zone, where research has largely focused on the local-scale processes that influence communities, while the mechanisms responsible for more regional shifts in communities are less clear. Transition probabilities of faunal elements were quantified bimonthly for ~2.5 yr in local intertidal communities at three replicate sites in the southern, mid-coast, and northern GOM. Transitions related to mortality, colonization, and replacement by mussels, barnacles, red algae, and encrusting corallines differed regionally, suggesting specific pathways related to consumer pressure and recruitment vary across the GOM with shifting intertidal community structure. Combined with species abundance data and insights from previous research, we develop and evaluate the pathways by which communities likely change in the GOM. Species interactions in local communities can be complex, and this complexity should be incorporated into hypothesis building, experiments, theory, interpretations, and forecasts in ecology. Such a comprehensive approach will be critical to understand how regional shifts in local interactions can drive large-scale community change.

摘要

理解大尺度过程在调节群落组装、结构和动态方面的作用对于预测气候变化的影响和管理生态系统至关重要。然而,由于物种相互作用具有复杂性、相互依赖性和时空动态性,因此很难形成这种全面的观点。通常,实验侧重于最关键的可处理相互作用的子集,以调查和解释群落的变化,但这些选择主要基于经验、自然历史和理论。一种无需降低系统复杂性即可识别调节群落的潜在力量的定量方法是估计占据空间的物种之间的转移概率(即,多物种马尔可夫链模型)。尽管这些模型不是机械的,但它们估计了生态途径在群落组装和动态中的相对频率和重要性,并可作为一个框架来识别途径如何在大尺度上变化,以及哪些途径最重要,需要进一步研究。在这里,我们在缅因湾(GOM)潮间带演示了这种方法,在那里,研究主要集中在影响群落的局部尺度过程上,而导致群落更广泛变化的机制则不太清楚。在 GOM 南部、中海岸和北部的三个重复地点的当地潮间带群落中,每两个月量化一次动物区系元素的转移概率,持续约 2.5 年。与死亡率、定殖以及贻贝、藤壶、红藻和附生珊瑚藻的替代相关的转变在区域上有所不同,这表明与消费者压力和繁殖有关的特定途径在 GOM 中随潮间带群落结构的变化而变化。结合物种丰度数据和以前研究的见解,我们提出并评估了 GOM 中群落可能发生变化的途径。局部群落中的物种相互作用可能很复杂,这种复杂性应该纳入生态学中的假设构建、实验、理论、解释和预测。这种全面的方法对于理解局部相互作用的区域变化如何驱动大尺度的群落变化至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验