Alkhayuon Hassan M, Ashwin Peter
Centre for Systems, Dynamics and Control, Department of Mathematics, University of Exeter, Exeter EX4 4QF, United Kingdom.
Chaos. 2018 Mar;28(3):033608. doi: 10.1063/1.5000418.
We consider how breakdown of the quasistatic approximation for attractors can lead to rate-induced tipping, where a qualitative change in tracking/tipping behaviour of trajectories can be characterised in terms of a critical rate. Associated with rate-induced tipping (where tracking of a branch of quasistatic attractors breaks down), we find a new phenomenon for attractors that are not simply equilibria: partial tipping of the pullback attractor where certain phases of the periodic attractor tip and others track the quasistatic attractor. For a specific model system with a parameter shift between two asymptotically autonomous systems with periodic attractors, we characterise thresholds of rate-induced tipping to partial and total tipping. We show these thresholds can be found in terms of certain periodic-to-periodic and periodic-to-equilibrium connections that we determine using Lin's method for an augmented system.
我们考虑吸引子的准静态近似的失效如何导致速率诱导的翻转,其中轨迹的跟踪/翻转行为的定性变化可以用临界速率来表征。与速率诱导的翻转相关(其中准静态吸引子分支的跟踪失效),我们发现了一种对于并非简单平衡态的吸引子的新现象:回溯吸引子的部分翻转,即周期吸引子的某些相位翻转而其他相位跟踪准静态吸引子。对于一个在具有周期吸引子的两个渐近自治系统之间存在参数偏移的特定模型系统,我们表征了速率诱导的部分翻转和完全翻转的阈值。我们表明,这些阈值可以根据我们使用林方法针对一个扩充系统所确定的某些周期到周期以及周期到平衡的连接来找到。