Suppr超能文献

人工神经网络可检测人类的不确定性。

Artificial neural network detects human uncertainty.

作者信息

Hramov Alexander E, Frolov Nikita S, Maksimenko Vladimir A, Makarov Vladimir V, Koronovskii Alexey A, Garcia-Prieto Juan, Antón-Toro Luis Fernando, Maestú Fernando, Pisarchik Alexander N

机构信息

Artificial Intelligence Systems and Neurotechnologies, Yuri Gagarin State Technical University of Saratov, Politehnicheskaya, 77, Saratov 410054, Russia.

Saratov State University, Astrakhanskaya, 83, Saratov 410012, Russia.

出版信息

Chaos. 2018 Mar;28(3):033607. doi: 10.1063/1.5002892.

Abstract

Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.

摘要

人工神经网络(ANNs)是一种强大的数据分析工具。它们被应用于社会科学、机器人技术和神经生理学领域,用于解决分类、预测、模式识别等任务。在神经科学中,人工神经网络能够从多通道脑电图(EEG)或脑磁图(MEG)数据中识别特定形式的大脑活动。这使得人工神经网络成为脑机系统的高效计算核心。然而,尽管人工智能在识别和分类可良好重现的神经活动模式方面取得了重大成就,但将人工神经网络用于神经网络中模式的识别和分类仍需要额外关注,尤其是在模糊情况下。据此,在本研究中,我们展示了人工神经网络在对与不同程度模糊性的双稳态视觉刺激感知相对应的人类脑磁图试验进行分类方面的应用效率。我们表明,除了对与多稳态图像解释相关的脑状态进行分类外,在存在显著模糊性的情况下,人工神经网络能够检测到观察者对图像解释存疑时的不确定状态。基于所得结果,我们描述了人工神经网络在检测与决策过程困难相关的双稳态大脑活动方面的可能应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验