Departament de Fisica de la Materia Condensada, Universitat de Barcelona, C/ Marti i Franques 1, 08028 Barcelona, Spain.
J Chem Phys. 2018 Mar 28;148(12):123327. doi: 10.1063/1.5010303.
Single-molecule experiments with optical tweezers have become an important tool to study the properties and mechanisms of biological systems, such as cells and nucleic acids. In particular, force unzipping experiments have been used to extract the thermodynamics and kinetics of folding and unfolding reactions. In hopping experiments, a molecule executes transitions between the unfolded and folded states at a preset value of the force [constant force mode (CFM) under force feedback] or trap position [passive mode (PM) without feedback] and the force-dependent kinetic rates extracted from the lifetime of each state (CFM) and the rupture force distributions (PM) using the Bell-Evans model. However, hopping experiments in the CFM are known to overestimate molecular distances and folding free energies for fast transitions compared to the response time of the feedback. In contrast, kinetic rate measurements from pulling experiments have been mostly done in the PM while the CFM is seldom implemented in pulling protocols. Here, we carry out hopping and pulling experiments in a short DNA hairpin in the PM and CFM at three different temperatures (6 °C, 25 °C, and 45 °C) exhibiting largely varying kinetic rates. As expected, we find that equilibrium hopping experiments in the CFM and PM perform well at 6 °C (where kinetics are slow), whereas the CFM overestimates molecular parameters at 45 °C (where kinetics are fast). In contrast, nonequilibrium pulling experiments perform well in both modes at all temperatures. This demonstrates that the same kind of feedback algorithm in the CFM leads to more reliable determination of the folding reaction parameters in irreversible pulling experiments.
利用光镊的单分子实验已成为研究生物系统(如细胞和核酸)性质和机制的重要工具。特别是,力解拉链实验已被用于提取折叠和展开反应的热力学和动力学。在跳跃实验中,分子在预设力值(力反馈下的恒力模式(CFM))或阱位置(无反馈的被动模式(PM))之间在展开和折叠状态之间执行跃迁,并且从每个状态的寿命(CFM)和断裂力分布(PM)中提取力依赖性动力学速率,使用 Bell-Evans 模型。然而,与反馈的响应时间相比,CFM 中的跳跃实验已知会高估快速跃迁的分子距离和折叠自由能。相比之下,从牵引实验中获得的动力学速率测量主要是在 PM 中进行的,而 CFM 在牵引方案中很少实施。在这里,我们在 PM 和 CFM 中在三个不同温度(6°C、25°C 和 45°C)下进行短 DNA 发夹的跳跃和牵引实验,表现出很大变化的动力学速率。正如预期的那样,我们发现 CFM 和 PM 中的平衡跳跃实验在 6°C 时表现良好(动力学较慢),而 CFM 在 45°C 时高估了分子参数(动力学较快)。相比之下,非平衡牵引实验在两种模式下都能在所有温度下都能很好地进行。这表明 CFM 中的相同反馈算法可导致在不可逆牵引实验中更可靠地确定折叠反应参数。